In Vitro Biodegradation of a-C:H:SiOx Films on Ti-6Al-4V Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ti-6Al-4V Alloy Substrates
2.2. Preparation of a-C:H:SiOx Coatings
2.3. Surface Characterization
2.4. Adhesive Strength
2.5. Substrate Sterilization for Biodegradation Testing
2.6. In Vitro Biodegradation
2.7. Sodium Chloride Precipitation
2.8. Statistical Analysis
3. Results
3.1. Surface Morphology
3.2. Adhesion of a-C:H:SiOx Films
3.3. Visual Examination and Weighting of Substrates after Biodegradation
3.4. Identification of Na+ and Cl− Concentration during 5 Weeks of In Vitro Biodegradation
3.5. Results of SEM, EDX and Computer-Assisted Morphometry of Precipitates
3.6. Multiple Linear Regression
4. Discussion
5. Conclusions
- (1)
- With increasing film thickness, the root-mean-square roughness Rq indices reduces with 56 nm (for bare Ti-6Al-4V) to 36 nm (at a-C:H:SiOx film thickness 3 µm);
- (2)
- According to the Rockwell hardness test, the a-C:H:SiOx film with a thickness of 0.5 to 3 μm deposited onto the Ti-6Al-4V alloy surface, had a high adhesive strength (not worse than HF3);
- (3)
- The obtained coating was rather durable, since after the five-weak in vitro biodegradation in a 0.9% NaCl solution, the weight of a-C:H:SiOx-coated substrates did not change significantly (0.02–0.03% higher compared to initial level before immersion in a solvent);
- (4)
- According to the EDX analysis, a-C:H:SiOx films of 0.5 to 3 µm thickness statistically decreased Na+ (by 97–99.5%) and Cl− (by 96–98.5%) precipitation on the substrate surface;
- (5)
- The multiple regression equations showed that the lower precipitation of Na+ and Cl− with 0.99 determination coefficient onto the a-C:H:SiOx film surface, was provided by the growth in the C and Si content in the surface layer;
- (6)
- Computer-assisted morphometry of the a-C:H:SiOx-coated substrate surface showed a five–twenty-fold reduction in the area occupied by the precipitated grains as compared to the uncoated substrates.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namus, R.; Rainforth, W.M. The influence of cathodic potentials on the surface oxide layer status and tribocorrosion behaviour of Ti6Al4V and CoCrMo alloys in simulated body fluid. Biotribology 2022, 30, 100212. [Google Scholar] [CrossRef]
- Costa, B.C.; Tokuhara, C.K.; Rocha, L.A.; Oliveira, R.C.; Lisboa-Filho, P.N.; Costa Pessoa, J. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. Mater. Sci. Eng. C 2019, 96, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 2014, 257, 213–240. [Google Scholar] [CrossRef]
- Yamada, Y.; Murashima, M.; Umehara, N.; Tokoroyama, T.; Lee, W.Y.; Takamatsu, H.; Tanaka, Y.; Utsumi, Y. Effect of Fracture Properties and Surface Morphology on Wear of DLC Coatings at Severe Contact Condition. Tribol. Int. 2022, 169, 107486. [Google Scholar] [CrossRef]
- Nagai, T.; Hiratsuka, M.; Alanazi, A.; Nakamori, H.; Hirakuri, K. Anticorrosion of DLC coating in acid solutions. Appl. Surf. Sci. 2021, 552, 149373. [Google Scholar] [CrossRef]
- Bai, M.; Yang, L.; Li, J.; Luo, L.; Sun, S.; Inkson, B. Mechanical and tribological properties of Si and W doped diamond like carbon (DLC) under dry reciprocating sliding conditions. Wear 2021, 484–485, 204046. [Google Scholar] [CrossRef]
- Wei, X.; Shi, S.; Ning, C.; Lu, Z.; Zhang, G. Si-DLC films deposited by a novel method equipped with a co-potential auxiliary cathode for anti-corrosion and anti-wear application. J. Mater. Sci. Technol. 2022, 109, 114–128. [Google Scholar] [CrossRef]
- Toyonaga, M.; Hasebe, T.; Maegawa, S.; Matsumoto, T.; Hotta, A.; Suzuki, T. The property of adhesion and biocompatibility of silicon and fluorine doped diamond-like carbon films. Diam. Relat. Mater. 2021, 119, 108558. [Google Scholar] [CrossRef]
- Bociaga, D.; Mitura, K. Biomedical effect of tissue contact with metallic material used for body piercing modified by DLC coatings. Diam. Relat. Mater. 2008, 17, 1410–1415. [Google Scholar] [CrossRef]
- Bociaga, D.; Kaminska, M.; Sobczyk-Guzenda, A.; Jastrzebski, K.; Swiatek, L.; Olejnik, A. Surface properties and biological behaviour of Si-DLC coatings fabricated by a multi-target DC–RF magnetron sputtering method for medical applications. Diam. Relat. Mater. 2016, 67, 41–50. [Google Scholar] [CrossRef]
- Bendavid, A.; Martin, P.J.; Comte, C.; Preston, E.W.; Haq, A.J.; Magdon Ismail, F.S.; Singh, R.K. The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition. Diam. Relat. Mater. 2007, 16, 1616–1622. [Google Scholar] [CrossRef]
- Wang, J.; Pu, J.; Zhang, G.; Wang, L. Tailoring the structure and property of silicon-doped diamond-like carbon films by controlling the silicon content. Surf. Coat. Technol. 2013, 235, 326–332. [Google Scholar] [CrossRef]
- Batory, D.; Jedrzejczak, A.; Szymanski, W.; Niedzielski, P.; Fijalkowski, M.; Louda, P.; Kotela, I.; Hromadka, M.; Musil, J. Mechanical characterization of a-C:H:SiOx coatings synthesized using radio-frequency plasma-assisted chemical vapor deposition method. Thin Solid Film. 2015, 590, 299–305. [Google Scholar] [CrossRef]
- Lubwama, M.; Corcoran, B.; Sayers, K.; Kirabira, J.B.; Sebbit, A.; McDonnell, K.A.; Dowling, D. Adhesion and composite micro-hardness of DLC and Si-DLC films deposited on nitrile rubber. Surf. Coat. Technol. 2012, 206, 4881–4886. [Google Scholar] [CrossRef]
- Bociaga, D.; Sobczyk-Guzenda, A.; Szymanski, W.; Jedrzejczak, A.; Jastrzebska, A.; Olejnik, A.; Swiatek, L.; Jastrzebski, K. Diamond like carbon coatings doped by Si fabricated by a multi-target DC-RF magnetron sputtering method—Mechanical properties, chemical analysis and biological evaluation. Vacuum 2017, 143, 395–406. [Google Scholar] [CrossRef]
- Bhowmick, S.; Banerji, A.; Lukitsch, M.J.; Alpas, A.T. The high temperature tribological behavior of Si, O containing hydrogenated diamond-like carbon (a-C:H/a-Si:O) coating against an aluminum alloy. Wear 2015, 330–331, 261–271. [Google Scholar] [CrossRef]
- Yin, P.; Wei, X.; Shang, L.; Lu, Z.; Zhang, G. Design of low-friction and anti-corrosion a-C:H:SiOx films. Diam. Relat. Mater. 2021, 118, 108512. [Google Scholar] [CrossRef]
- Wei, X.; Chen, L.; Zhang, M.; Lu, Z.; Zhang, G. Effect of dopants (F, Si) material on the structure and properties of hydrogenated DLC film by plane cathode PECVD. Diam. Relat. Mater. 2020, 110, 108102. [Google Scholar] [CrossRef]
- Batory, D.; Jedrzejczak, A.; Kaczorowski, W.; Kolodziejczyk, L.; Burnat, B. The effect of Si incorporation on the corrosion resistance of a-C:H:SiOx coatings. Diam. Relat. Mater. 2016, 67, 1–7. [Google Scholar] [CrossRef]
- Randeniya, L.K.; Bendavid, A.; Martin, P.J.; Amin, M.S.; Preston, E.W.; Magdon Ismail, F.S.; Coe, S. Incorporation of Si and SiOx into diamond-like carbon films: Impact on surface properties and osteoblast adhesion. Acta Biomater. 2009, 5, 1791–1797. [Google Scholar] [CrossRef]
- Bociaga, D.; Sobczyk-Guzenda, A.; Komorowski, P.; Balcerzak, J.; Jastrzebski, K.; Przybyszewska, K.; Kaczmarek, A. Surface Characteristics and Biological Evaluation of Si-DLC Coatings Fabricated Using Magnetron Sputtering Method on Ti6Al7Nb Substrate. Nanomaterials 2019, 9, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meskinis, S.; Tamuleviciene, A. Structure, properties and applications of diamond like nanocomposite (SiOx containing DLC) films: A review. Mater. Sci.-Medzg 2011, 17, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Okpalugo, T.I.T.; Murphy, H.; Ogwu, A.A.; Abbas, G.; Ray, S.C.; Maguire, P.D.; McLaughlin, J.; McCullough, R.W. Human Microvascular Endothelial Cellular Interaction with Atomic N-Doped DLC Compared with Si-Doped DLC Thin Films. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 78, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894. [Google Scholar] [CrossRef]
- Subramanian, B.; Thanka Rajan, S.; Martin, P.J.; Vaithilingam, V.; Bean, P.A.; Evans, M.D.M.; Bendavid, A. Biomineralization of osteoblasts on DLC coated surfaces for bone implants. Biointerphases 2018, 13, 041002. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Byrne, J.A.; Ahmed, W. Characteristic of silicon doped diamond like carbon thin films on surface properties and human serum albumin adsorption. Diam. Relat. Mater. 2015, 55, 108–116. [Google Scholar] [CrossRef]
- Teske, M.; Wulf, K.; Fink, J.; Brietzke, A.; Eickner, T.; Arbeiter, D.; Senz, V.; Grabow, N.; Illner, S. Controlled biodegradation of metallic biomaterials by plasma polymer coatings using hexamethyldisiloxane and allylamine monomers. Curr. Dir. Biomed. Eng. 2019, 5, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Oskirko, V.O. Effect of the plasma confinement on properties of a-C:H:SiOx films grown by plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 2019, 37, 061512. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Rabotkin, S.V.; Elgin, Y.I.; Sypchenko, V.S.; Ivanova, N.M. Effect of substrate bias and substrate/plasma generator distance on properties of a-C:H:SiOx films synthesized by plasma-assisted chemical vapor deposition. Thin Solid Film. 2019, 669, 253–261. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Sypchenko, V.S. Influence of deposition conditions on mechanical properties of a-C:H:SiOx films prepared by plasma-assisted chemical vapor deposition method. Surf. Coat. Technol. 2018, 349, 547–555. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Zhulkov, M.O.; Solovyev, A.A.; Oskomov, K.V.; Semenov, V.A.; Chernyavskiy, A.M.; Sirota, D.A.; Karmadonova, N.A.; Malashchenko, V.V.; Litvinova, L.S.; et al. Surface characterization and biological assessment of corrosion resistant a-C:H:SiOx PACVD coating for Ti-6Al-4 V alloy. Mater. Sci. Eng. C 2021, 123, 112002. [Google Scholar] [CrossRef] [PubMed]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V. Sliding wear characteristics of a-C:H:SiOx coatings. J. Tribol. 2022, 144, 051704. [Google Scholar] [CrossRef]
- Vidakis, N.; Antoniadis, A.; Bilalis, N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. J. Mater. Process. Technol. 2003, 143–144, 481–485. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Malashchenko, V.V.; Khlusov, I.A. Stability of a-C:H:SiOx coating on polypropylene to chemical sterilization. J. Appl. Polym. Sci. 2020, 137, e49570. [Google Scholar] [CrossRef]
- Prosolov, K.A.; Mitrichenko, D.V.; Prosolov, A.B.; Nikolaeva, O.O.; Lastovka, V.V.; Belyavskaya, O.A.; Chebodaeva, V.A.; Glukhov, I.A.; Litvinova, L.S.; Shupletsova, V.V.; et al. Zn-Doped CaP-Based Coatings on Ti-6Al-4V and Ti–6Al–7Nb Alloys Prepared by Magnetron Sputtering: Controllable Biodegradation, Bacteriostatic, and Osteogenic Activities. Coatings 2021, 11, 809. [Google Scholar] [CrossRef]
- Corona-Gomez, J.; Shiri, S.; Mohammadtaheri, M.; Yang, Q. Adhesion enhancement of DLC on CoCrMo alloy by diamond and nitrogen incorporation for wear resistant applications. Surf. Coat. Technol. 2017, 332, 120–127. [Google Scholar] [CrossRef]
- Lan, R.; Ma, Z.; Wang, C.; Lu, G.; Yuan, Y.; Shi, C. Microstructural and tribological characterization of DLC coating by in-situ duplex plasma nitriding and arc ion plating. Diam. Relat. Mater. 2019, 98, 107473. [Google Scholar] [CrossRef]
- Zuo, S.; Miao, Q.; Liang, W.; Xiao, F.; Liu, R.; Liu, Y.; Ding, Z.; Yang, Z. A study on the mechanical performance and medium temperature tribological behavior of plasma nitrocarburizing/TiAlSiN/DLC composite coating. Surf. Interfaces 2021, 27, 101489. [Google Scholar] [CrossRef]
- Gerth, J.; Wiklund, U. The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel. Wear 2008, 264, 885–892. [Google Scholar] [CrossRef]
- Tillmann, W.; Grisales, D.; Stangier, D.; Ben Jebara, I.; Kang, H. Influence of the etching processes on the adhesion of TiAlN coatings deposited by DCMS, HiPIMS and hybrid techniques on heat treated AISI H11. Surf. Coat. Technol. 2019, 378, 125075. [Google Scholar] [CrossRef]
- Pichugin, V.F.; Pustovalova, A.A.; Konishchev, M.E.; Khlusov, I.A.; Ivanova, N.M.; Zhilei, S.; Gutor, S.S. In-Vitro Dissolution and Structural and Electrokinetic Characteristics of Titanium-Oxynitride Coatings Formed via Reactive Magnetron Sputtering. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2016, 10, 282–291. [Google Scholar] [CrossRef]
- Polukhina, A.E.; Malashchenko, V.V.; Grenaderov, A.S.; Yurova, K.A.; Solov’ev, A.A.; Litvinova, L.S.; Khlusov, I.A. Cellular and Molecular Issues of Hemo- and Biocompatibility of Diamond-Like Carbon Films. A Brief Critical Review. Cell Tissue Biol. 2022, 16, 1–14. [Google Scholar] [CrossRef]
- Kerner, J.A.; Garcia-Careaga, M.G.; Fisher, A.A.; Poole, R.L. Treatment of catheter occlusion in pediatric patients. J. Parenter. Enter. Nutr. 2006, 30, s73–s81. [Google Scholar] [CrossRef] [PubMed]
- Vetsch, J.R.; Paulsen, S.J.; Müller, R.; Hofmann, S. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds. Acta Biomater. 2015, 13, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCluskey, S.V.; Gardner, B.; Graner, K.K.; Vu, N. Stability of chlorothiazide sodium in polypropylene syringes. Am. J. Health Syst. Pharm. 2015, 72, 1292–1297. [Google Scholar] [CrossRef]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed.; Elsevier Science Publishing Co.: San Diego, CA, USA, 2004; p. 864. [Google Scholar]
- Hauert, R. A review of modified DLC coatings for biological applications. Diam. Relat. Mater. 2003, 12, 583–589. [Google Scholar] [CrossRef]
- Blumberg, N.; Cholette, J.M.; Pietropaoli, A.P.; Phipps, R.; Spinelli, S.L.; Eaton, M.P.; Noronha, S.A.; Seghatchian, J.; Heal, J.M.; Refaai, M.A. 0.9% NaCl (Normal Saline)—Perhaps not so normal after all. Transfus. Apher. Sci. 2018, 57, 127–131. [Google Scholar] [CrossRef]
- Ohtake, N.; Hiratsuka, M.; Kanda, K.; Akasaka, H.; Tsujioka, M.; Hirakuri, K.; Hirata, A.; Ohana, T.; Inaba, H.; Kano, M.; et al. Properties and Classification of Diamond-Like Carbon Films. Materials 2021, 14, 315. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Oskirko, V.O.; Solovyev, A.A.; Oskomov, K.V.; Khlusov, I.A. Wear and Corrosion Resistance of a-C:H:SiOx Coating on Medical 316L Stainless Steel. J. Mater. Eng. Perform. 2021, 30, 1099–1109. [Google Scholar] [CrossRef]
- Qin, D.; He, Z.; Li, P.; Zhang, S. Liquid-Liquid Phase Separation in Nucleation Process of Biomineralization. Front. Chem. 2022, 10, 834503. [Google Scholar] [CrossRef]
- Salahas, A.; Vrahatis, A.; Karabinos, I.; Antonellis, I.; Ifantis, G.; Gavaliatsis, I.; Anthopoulos, P.; Tavernarakis, A. Success, safety, and efficacy of implantation of diamond-like carbon-coated stents. Angiology 2007, 58, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Wöhrle, J.; Nusser, T.; Langenwalder, S.; Heombach, V.; Kochs, M. Carbon-coated stents in patients with acute coronary syndromes. Clin. Cardiol. 2009, 32, E1–E6. [Google Scholar] [CrossRef] [PubMed]
- Airoldi, F.; Colombo, A.; Tavano, D.; Stankovic, G.; Klugmann, S.; Paolillo, V.; Bonizzoni, E.; Briguori, C.; Carlino, M.; Montorfano, M.; et al. Comparison of diamond-like carbon-coated stents versus uncoated stainless steel stents in coronary artery disease. Am. J. Cardiol. 2004, 93, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Meireles, G.C.; de Abreu, L.M.; Forte, A.A.; Sumita, M.K.; Sumita, J.H.; Aliaga, J.D.C.S. Randomized comparative study of diamond-like carbon coated stainless steel stent versus uncoated stent implantation in patients with coronary artery disease. Arq. Bras. Cardiol. 2007, 88, 390–395. [Google Scholar] [CrossRef] [Green Version]
Titanium, wt.% | Aluminum, wt.% | Vanadium, wt.% | Impurities (Fe, Zr, O, C, Si, N), wt.% |
---|---|---|---|
88.4 ± 1.2 | 6.2 ± 0.6 | 4.1 ± 0.4 | ˂1.3 |
Thickness, µm | Rmax, nm | Rmean, nm | Ra, nm | Rq, nm |
---|---|---|---|---|
Uncoted Ti-6Al-4V | 352 ± 22 | 164 ± 14 | 45 ± 5 | 56 ± 7 |
0.5 ± 0.1 | 330 ± 20 | 152 ± 12 | 39 ± 5 | 51 ± 7 |
1.5 ± 0.2 | 289 ± 16 | 162 ± 11 | 29 ± 4 | 37 ± 5 |
3 ± 0.3 | 273 ± 14 | 129 ± 9 | 28 ± 4 | 36 ± 5 |
Substrates | Initial Weight, mg | Dry Weight, Initial Weight Percentage |
---|---|---|
Uncoated | 337.58 (337.46; 342.10) | 100.00 (99.99; 100.01) |
a-C:H:SiOx-coated 0.5-µm thick film | 341.62 (340.57; 344.77) | 100.02 (100.02; 100.03) |
a-C:H:SiOx-coated 1.5-µm thick film | 343.78 (335.79; 347.15) | 100.03 (100.01; 100.04) |
a-C:H:SiOx-coated 3-µm thick film | 341.46 (340.97; 342.30) | 100.03 (100.03; 100.05) |
Group Number | Substrates, n = 3 | Surface Area of NaCl Precipitates, Area Percentage on SEM Image, n1 = 10 |
---|---|---|
1 | Uncoated Ti-6Al-4V | 23.23 (13.60–54.88) |
2 | a-C:H:SiOx-coated 0.5 µm thick | 1.08 (0.80–1.29), PU1 < 0.001 |
3 | a-C:H:SiOx-coated 1.5 µm thick | 4.18 (0.005–6.32), PU1 < 0.001 |
4 | a-C:H:SiOx-coated 3 µm thick | 2.06 (0.59–2.81), PU1 < 0.001 |
Group Number | Substrates | C | O | Si | Ti | Na | Cl |
---|---|---|---|---|---|---|---|
1 | Uncoated Ti-6Al-4V | 3.30 (2.65–5.04) | 7.08 (6.26–9.45) | 0.39 (0.38–0.45) | 76.43 (75.25–81.82) | 9.63 (2.81–11.98) | 4.15 (0.94–5.18) |
2 | a-C:H:SiOx-coated 0.5-µm thick film | 45.62 (44.71–5.89) PU1 < 0.001 | 5.43 (5.27–5.55) PU1 < 0.05 | 3.27 (3.25–3.41) PU1 < 0.001 | 45.63 (44.63–46.76) PU1 < 0.001 | 0.28 (0.25–0.38) PU1 < 0.001 | 0.07 (0.05–0.15) PU1 < 0.001 |
3 | a-C:H:SiOx-coated 1.5-µm thick film | 63.29 (62.96–63.45) PU1-2 < 0.001 | 4.88 (4.38–5.09) PU1-2 < 0.01 | 10.84 (10.61–11.10) PU1-2 < 0.001 | 20.72 (20.33–21.34) PU1-2 < 0.001 | 0.06 (0–0.16) PU1 < 0.001 | 0.16 (0.13–0.19) PU1 < 0.001 |
4 | a-C:H:SiOx-coated 3-µm thick film | 80.91 (80.19–81.10) PU1-3 < 0.001 | 2.98 (2.75–3.09) PU1-3 < 0.001 | 14.69 (14.49–14.80) PU1-3 < 0.001 | 1.42 (1.31–1.72) PU1-3 < 0.001 | 0.06 (0.05–0.07) PU1,2 < 0.001 | 0.10 (0.09–0.12) PU1 < 0.001 |
Surficial Chemical Elements | Na+ Precipitation | Cl− Precipitation | ||
---|---|---|---|---|
Coefficients | F-Test, P Significance | Coefficients | F-Test, P Significance | |
C | −0.632 ± 0.018 | <0.001 | −0.306 ± 0.012 | <0.001 |
O | −0.791 ± 0.057 | <0.001 | −0.318 ± 0.037 | <0.001 |
Si | −0.537 ± 0.058 | <0.001 | −0.301 ± 0.038 | <0.001 |
Ti | −0.594 ± 0.030 | <0.001 | −0.306 ± 0.020 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grenadyorov, A.; Solovyev, A.; Oskomov, K.; Porokhova, E.; Brazovskii, K.; Gorokhova, A.; Nasibov, T.; Litvinova, L.; Khlusov, I. In Vitro Biodegradation of a-C:H:SiOx Films on Ti-6Al-4V Alloy. Materials 2022, 15, 4239. https://doi.org/10.3390/ma15124239
Grenadyorov A, Solovyev A, Oskomov K, Porokhova E, Brazovskii K, Gorokhova A, Nasibov T, Litvinova L, Khlusov I. In Vitro Biodegradation of a-C:H:SiOx Films on Ti-6Al-4V Alloy. Materials. 2022; 15(12):4239. https://doi.org/10.3390/ma15124239
Chicago/Turabian StyleGrenadyorov, Alexander, Andrey Solovyev, Konstantin Oskomov, Ekaterina Porokhova, Konstantin Brazovskii, Anna Gorokhova, Temur Nasibov, Larisa Litvinova, and Igor Khlusov. 2022. "In Vitro Biodegradation of a-C:H:SiOx Films on Ti-6Al-4V Alloy" Materials 15, no. 12: 4239. https://doi.org/10.3390/ma15124239
APA StyleGrenadyorov, A., Solovyev, A., Oskomov, K., Porokhova, E., Brazovskii, K., Gorokhova, A., Nasibov, T., Litvinova, L., & Khlusov, I. (2022). In Vitro Biodegradation of a-C:H:SiOx Films on Ti-6Al-4V Alloy. Materials, 15(12), 4239. https://doi.org/10.3390/ma15124239