Effect of the Longitudinal Tensile Creep on the Stiffness of Radiata Pine (Pinus radiata D. Don)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Conditions
2.2. Load Determination for the Tensile Creep Test
2.3. Determination of the Modulus of Elasticity of Specimens before and after the Creep Tests
2.4. Tensile Longitudinal Creep Test
2.5. Morphological Changes of the Samples Subjected to Tensile Creep
2.6. Statistical Analysis
3. Results and Discussion
3.1. Modulus of Elasticity of the Specimens before Tensile Creep
3.2. Behavior of the Specimens Subjected to the Tensile Creep
3.3. Moduli of Elasticity in Specimens Subjected to Tensile Creep
3.4. Morphology of Wood Cells Subjected to Tensile Stress
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quispe, N.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem. Rev. 2016, 116, 9305–9374. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.H.; Zhong, R. Molecular control of wood formation in trees. J. Exp. Bot. 2015, 66, 4119–4131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begum, S.; Kudo, K.; Rahman, M.H.; Nakaba, S.; Yamagishi, Y.; Nabeshima, E.; Nugroho, W.D.; Oribe, Y.; Kitin, P.; Jin, H.O.; et al. Climate change and the regulation of wood formation in trees by temperature. Trees Struct. Funct. 2018, 32, 3–15. [Google Scholar] [CrossRef]
- Eder, M.; Arnould, O.; Dunlop, J.W.C.; Hornatowska, J.; Salmén, L. Experimental micromechanical characterisation of wood cell walls. Wood Sci. Technol. 2013, 47, 163–182. [Google Scholar] [CrossRef] [Green Version]
- Salmén, L.; Burgert, I. Cell wall features with regard to mechanical performance. A review. COST Action E35 2004-2008: Wood machining-Micromechanics and fracture. Holzforschung 2009, 63, 121–129. [Google Scholar] [CrossRef]
- Mansfield, S.D.; Parish, R.; Di Lucca, C.M.; Goudie, J.; Kang, K.Y.; Ott, P. Revisiting the transition between juvenile and mature wood: A comparison of fibre length, microfibril angle and relative wood density in lodgepole pine. Holzforschung 2009, 63, 449–456. [Google Scholar] [CrossRef]
- Walker, J.C.F.; Butterfield, B.G. The importance of microfibril angle for the processing industries. N. Z. For. 1996, 40, 34–40. [Google Scholar]
- Mead, D.J. Sustainable Management of Pinus Radiata Plantations; FAO Forestry Paper No. 170; FAO: Rome, Italy, 2013; pp. 78–87. ISBN 9789251076347. [Google Scholar]
- Rowell, R. Dimensional stability and fungal durability of acetylated wood. Drewno 2016, 59, 139–150. [Google Scholar]
- Mantanis, G. Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources 2017, 12, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Nordstierna, L.; Lande, S.; Westin, M.; Karlsson, O.; Furo, I. Towards novel wood-based materials: Chemical bonds between lignin-like model molecules and poly (furfuryl alcohol) studied by NMR. Holzforschung 2008, 62, 709–713. [Google Scholar] [CrossRef]
- Gerardin, P. New alternatives for wood preservation based on thermal and chemical modification of wood-a review. Ann. For. Sci. 2016, 73, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ren, D.; Zhang, X.; Wang, H.; Yu, Y. The furfurylation of wood: A nanomechanical study of modified wood cells. BioResources 2016, 11, 3614–3625. [Google Scholar] [CrossRef]
- Mantanis, G.; Lykidis, C. Evaluation of weathering of furfurylated wood decks after a 3-year outdoor exposure in Greece. Drv. Ind. 2015, 66, 115–122. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies-A review. iForest Biogeosci. For. 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Aytin, A.; Korkut, S.; Çakıcıer, N. The Effect of ThermoWood Method Heat Treatment on Physical and Mechanical Properties of Sorbus torminalis. BioResources 2018, 14, 3289–3300. [Google Scholar]
- Kesik, H.I.; Korkut, S.; Hiziroglu, S.; Sevik, H. An evaluation of properties of four heat treated wood species. Ind. Crops Prod. 2014, 60, 60–65. [Google Scholar] [CrossRef]
- Priadi, T.; Hiziroglu, S. Characterization of heat treated wood species. Mater. Des. 2013, 49, 575–582. [Google Scholar] [CrossRef]
- Jirouš-Rajković, V.; Miklecić, J. Heat-Treated Wood as a Substrate for Coatings, Weathering of Heat-Treated Wood, and Coating Performance on Heat-Treated Wood. Adv. Mater. Sci. Eng. 2019, 2019, 8621486. [Google Scholar] [CrossRef] [Green Version]
- Mastouri, A.; Efhamisisi, D.; Shirmohammadli, Y.; Oladi, R. Physicochemical properties of thermally treated poplar wood in silicone and rapeseed oils: A comparative study. J. Build. Eng. 2021, 43, 102511. [Google Scholar] [CrossRef]
- Herrera-Díaz, R.; Sepúlveda-Villarroel, V.; Pérez-Peña, N.; Salvo-Sepúlveda, L.; Salinas-Lira, C.; Llano-Ponte, R.; Ananías, R.A. Effect of wood drying and heat modification on some physical and mechanical properties of radiata pine. Dry. Technol. 2018, 36, 537–544. [Google Scholar] [CrossRef]
- Bao, M.; Huang, X.; Jiang, M.; Yu, W.; Yu, Y. Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). J. Wood Sci. 2017, 63, 591–605. [Google Scholar] [CrossRef]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef] [Green Version]
- Kooche Baghy, P.; Avramidis, S. Thermo-hydro-mechanical densification of hemlock. Int. Wood Prod. J. 2021, 12, 231–239. [Google Scholar] [CrossRef]
- Bustos, C.; Gacitúa, W.; Cloutier, A.; Fang, C.; Valenzuela, P. Densification of wood veneers combined with oil-heat treatment. part iii: Cell wall mechanical properties determined by nanoindentation. BioResources 2011, 7, 1525–1532. [Google Scholar] [CrossRef] [Green Version]
- Sadatnezhad, S.H.; Khazaeian, A.; Sandberg, D.; Tabarsa, T. Continuous surface densification of wood: A new concept for large-scale industrial processing. BioResources 2017, 12, 3122–3132. [Google Scholar] [CrossRef] [Green Version]
- Lallart, P.Y.; Wehsener, J.; Hartig, J.; Haller, P. Thermo-hydro-mechanical behaviour of acetylated wood: Swelling, compression set recovery and mouldability. Eur. J. Wood Wood Prod. 2017, 75, 281–284. [Google Scholar] [CrossRef]
- Pelit, H.; Sönmez, A.; Budakçi, M. Effects of thermomechanical densification and heat treatment on density and Brinell hardness of scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.). BioResources 2015, 10, 3097–3111. [Google Scholar] [CrossRef]
- Young-Hee, L. Method for Manufacturing a High Strength Lumber. U.S. Patent 5937925A, 17 August 1999. [Google Scholar]
- Shi, J.; Peng, J.; Huang, Q.; Cai, L.; Shi, S.Q. Fabrication of densified wood via synergy of chemical pretreatment, hot-pressing and post mechanical fixation. J. Wood Sci. 2020, 66, 5. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Lyu, S.; Cai, L.; Peng, L.; Tang, J.; Huang, Z.; Lyu, J. Performance improvement of radiata pine wood by combining impregnation of furfuryl alcohol resin and densification for making fretboard materials. Ind. Crops Prod. 2021, 172, 114029. [Google Scholar] [CrossRef]
- Rowell, R. Chemical Modification of Wood. In Handbook of Engineering Biopolymers Homopolymers, Blends and Composites; Stoyko, F., Bhattacharyya, D., Eds.; Hanser: Munich, Germany, 2007; pp. 673–691. [Google Scholar]
- Bekha, P.; Niemz, P. Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Wang, J.; Cooper, P. Effect of oil type, temperature and time on moisture proporties of hot oil-treated wood. Holz Als Roh Werkst. 2005, 63, 417–422. [Google Scholar] [CrossRef]
- Ates, S.; Akyildiz, M.; Ozdemir, H. Effects of heat treatment on calabrian pine. BioResources 2009, 4, 1032–1043. [Google Scholar]
- Kim, G.; Yun, K.; Kim, J. Effect of heat treatment on the decay resistence and the the bending properties of radiata sapwood. Mater. Org. 1998, 32, 101–108. [Google Scholar]
- Shi, J.; Kocaefe, D.; Zhang, J. Mechanical behaviour of Québec wood species heat treated using ThermoWood process. Holz Als Roh Werkst. 2007, 65, 255–259. [Google Scholar] [CrossRef]
- Boonstral, M.; Van Acker, J.; Tjeerdsma, B.; Kegel, E.V. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Militz, H.; Tjeerdsma, B. Heat treatment of wood by the Plato-Process. In Proceedings of the Special Seminar of Coast Action E22, Antibes, France, 9 February 2001. [Google Scholar]
- Hill, C. Wood Modification-Chemical, Thermal and Other Processes; Wiley Series Renewable Resources; Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Rautkari, L.; Properzi, M.; Pichelin, F.; Hughes, M. Surface modification of wood using friction. Wood Sci. Technol. 2009, 43, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Neyses, B.; Hagman, O.; Nilsson, A. Development of a continuous wood surface densification process: The roller pressing technique. In Proceedings of the 59th International Convention of Society of Wood Science and Technology. Forest Resource and Products: Moving Toward a Sustainable Future, Curitiba, Brazil, 6–10 March 2016; pp. 17–24. [Google Scholar]
- Cruz, N.; Bustos, C.; Aguayo, M.G.; Cloutier, A.; Castillo, R. Impact of the chemical composition of Pinus radiata wood on its physical and mechanical properties following thermo-hygromechanical densification. BioResources 2018, 13, 2268–2282. [Google Scholar] [CrossRef]
- Fang, C.-H.; Cloutier, A.; Jiang, Z.-H.; He, J.-Z.; Fei, B.-H. Improvement of Wood Densification Process via Enhancing Steam Diffusion, Distribution, and Evaporation. BioResources 2019, 14, 3278–3288. [Google Scholar] [CrossRef]
- Fang, C.H.; Cloutier, A.; Blanchet, P.; Koubaa, A. Densification of wood veneers combined with oil-heat treatment. Part II: Hygroscopicity and mechanical properties. BioResources 2012, 7, 925–935. [Google Scholar]
- Fang, C.H.; Mariotti, N.; Cloutier, A.; Koubaa, A.; Blanchet, P. Densification of wood veneers by compression combined with heat and steam. Eur. J. Wood Wood Prod. 2012, 70, 155–163. [Google Scholar] [CrossRef]
- Boonstra, M.; Tjeerdsma, B. Chemical analysis of heat-treated softwoods. Holz Als Roh Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Hermoso, E.; Carballo, J.; Fernandez-Golfin, J.I. Structural characterization of Pinus radiata D. Don timber from Pais Vasco (Spain) according to standard modifications. Maderas Cienc. Tecnol. 2007, 9, 223–232. [Google Scholar]
- Broda, M.; Spear, M.J.; Curling, S.F.; Ormondroyd, G.A. The viscoelastic behaviour of waterlogged archaeological wood treated with methyltrimethoxysilane. Materials 2021, 14, 5150. [Google Scholar] [CrossRef]
- Navi, P.; Stanzl-Tschegg, S. Micromechanics of creep and relaxation of wood. A review. Holzforschung 2009, 63, 186–195. [Google Scholar]
- Bandeira, B.; Lewis, E.; Barton, D.; Ward, I. The degree of crystalline orientation as a function of draw ratio in semicrystalline polymers: A new model based on the geometry of the crystalline chain slip mechanism. J. Mater. Sci. 2016, 51, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Holzer, S.M.; Loferski, J.R.; Dillard, D.A. A review of creep in wood: Concepts relevant to develop long-term behavior predictions for wood structures. Wood Fiber Sci. 1989, 21, 376–392. [Google Scholar]
- Jin, F.; Jiang, Z.; Wu, Q. Creep behavior of wood plasticized by moisture and temperature. BioResources 2016, 11, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Engelund, E.T.; Salmén, L. Tensile creep and recovery of Norway spruce influenced by temperature and moisture. Holzforschung 2012, 66, 959–965. [Google Scholar] [CrossRef]
- Norimoto, M.; Ota, C.; Akitsu, H.; Yamada, T. Permanent fixation of Bending Deformation in wood by heat treatment. Wood Res. 1993, 79, 23–33. [Google Scholar]
- Fratzl, P.; Burgert, I.; Keckes, J. Mechanical model for the deformation of the wood cell wall. Int. J. Mater. Res. 2004, 95, 579–584. [Google Scholar] [CrossRef]
- Shah, D.U. Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Compos. Part A Appl. Sci. Manuf. 2016, 83, 160–168. [Google Scholar] [CrossRef] [Green Version]
- de Andrade Silva, F.; Chawla, N.; de Toledo Filho, R.D. An experimental investigation of the fatigue behavior of sisal fibers. Mater. Sci. Eng. A 2009, 516, 90–95. [Google Scholar] [CrossRef]
- Spatz, H.C.; Köhler, L.; Niklas, K.J. Mechanical behaviour of plant tissues: Composite materials or structures? J. Exp. Biol. 1999, 202, 3269–3272. [Google Scholar] [CrossRef]
- Baley, C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos. Part A Appl. Sci. Manuf. 2002, 33, 939–948. [Google Scholar] [CrossRef]
- Placet, V.; Cissé, O.; Lamine Boubakar, M. Nonlinear tensile behaviour of elementary hemp fibres. Part I: Investigation of the possible origins using repeated progressive loading with in situ microscopic observations. Compos. Part A Appl. Sci. Manuf. 2014, 56, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Nakai, T.; Toba, K.; Yamamoto, H. Creep and stress relaxation behavior for natural cellulose crystal of wood cell wall under uniaxial tensile stress in the fiber direction. J. Wood Sci. 2018, 64, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Keckes, J.; Burgert, I.; Frühmann, K.; Müller, M.; Kölln, K.; Hamilton, M.; Burghammer, M.; Roth, S.V.; Stanzl-Tschegg, S.; Fratzl, P. Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2003, 2, 810–814. [Google Scholar] [CrossRef]
- Thomas, L.H.; Altaner, C.M.; Forsyth, V.T.; Mossou, E.; Kennedy, C.J.; Martel, A.; Jarvis, M.C. Nanostructural deformation of high-stiffness spruce wood under tension. Sci. Rep. 2021, 11, 453. [Google Scholar] [CrossRef]
- Kojima, Y.; Yamamoto, H. Effect of microfibril angle on the longitudinal tensile creep behavior of wood. J. Wood Sci. 2004, 50, 301–306. [Google Scholar] [CrossRef]
- Kojima, Y.; Yamamoto, H. Effect of moisture content on the longitudinal tensile creep behavior of wood. J. Wood Sci. 2005, 51, 462–467. [Google Scholar] [CrossRef]
- Kamiyama, T.; Suzuki, H.; Sugiyama, J. Studies of the structural change during deformation in Cryptomeria japonica by time-resolved synchrotron small-angle X-ray scattering. J. Struct. Biol. 2005, 151, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Peura, M.; Andersson, S.; Salmi, A.; Karppinen, T.; Torkkeli, M.; Haæggström, E.; Serimaa, R. Changes in nanostructure of wood cell wall during deformation. Mater. Sci. Forum 2009, 599, 126–136. [Google Scholar] [CrossRef]
- Pearson, H.; Gabbitas, B.; Ormarsson, S. Tensile behaviour of radiata pine with different moisture contents at elevated temperatures. Holzforschung 2012, 66, 659–665. [Google Scholar] [CrossRef]
- ASTM D2395:14; Standard Test Method for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. ASTM: Conshohocken, PA, USA, 2014; Volume 93, pp. 1–13. [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: Conshohocken, PA, USA, 2014. [CrossRef]
- Baradit, E.; Fuentealba, C.; Yáñez, M. Elastic constants of Chilean Pinus radiata Using ultrasonic. Maderas Cienc. Tecnol. 2021, 23, 1–10. [Google Scholar] [CrossRef]
- Elzaki, O.T.; Khider, T.O. Physical and Mechanical Properties of Pinus radiata from Jebel Marra Western Sudan. J. For. Prod. Ind. 1989, 2, 53–57. [Google Scholar]
- Lenth, C.; Sargent, R. Wood material behavior during drying: Moisture-dependent tensile stiffness and strength of radiata pine at 70–150°. Dry. Technol. 2008, 26, 1112–1117. [Google Scholar] [CrossRef]
- Baillères, H.; Hopewell, G.; Boughton, G.; Brancheriau, L. Strength and stiffness assessment technologies for improving grading effectiveness of radiata pine wood. BioResources 2012, 7, 1264–1282. [Google Scholar]
- Müller, U.; Sretenovic, A.; Gindl, W.; Grabner, M.; Wimmer, R.; Teischinger, A. Effects of macro- and micro-structural variability on the shear behavior of softwood. IAWA J. 2004, 25, 231–243. [Google Scholar] [CrossRef]
- Cave, I.; Walker, J. Stiffness of wood in fastgrown plantation softwoods: The influence of microfibril angle. For. Prod. J. 1994, 44, 43–48. [Google Scholar]
- Li, A.; Jiang, J.; Lu, J. Differences in the viscoelastic properties between earlywood and latewood in the growth rings of Chinese fir as analyzed by dynamic mechanical analysis (DMA) in the temperature range between −120 °C and 120 °C. Holzforschung 2019, 73, 241–250. [Google Scholar] [CrossRef]
- Yin, Y.; Mingming, B.; Kunlin, S.; Fuming, X.; Jiang, X. Influence of microfibril angle on within-tree variations in the mechanical properties of chinese fir (Cunninghamia lanceolata). IAWA J. 2011, 32, 431–442. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Qing, H. Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review. Comput. Mater. Sci. 2008, 44, 363–370. [Google Scholar] [CrossRef]
- Reiterer, A.; Burgert, I.; Sinn, G.; Tschegg, S. The radial reinforcement of the wood structure and its implication on mechanical and fracture mechanical properties-A comparison between two tree species. J. Mater. Sci. 2002, 37, 935–940. [Google Scholar] [CrossRef]
- Borůvka, V.; Novák, D.; Šedivka, P. Comparison and analysis of radial and tangential bending of softwood and hardwood at static and dynamic loading. Forests 2020, 11, 896. [Google Scholar] [CrossRef]
- Güray, E.; Kasal, A.; Demirci, S.; Ceylan, E.; Kuskun, T. Effects of cross-sectional geometry and force direction on bending strength and modulus of elasticity of some softwood beams. BioResources 2019, 14, 9258–9270. [Google Scholar]
- Roszyk, E.; Moliński, W.; Fabisiak, E. Radial variation of mechanical properties of pine wood (Pinus sylvestris L.) determined upon tensile stress. Wood Res. 2013, 58, 329–342. [Google Scholar]
- Anagnost, S.E.; Mark, R.E.; Hanna, R.B. Variation of microfibril angle within individual tracheids. Wood Fiber Sci. 2002, 34, 337–349. [Google Scholar]
- Dong, F.; Olsson, A.M.; Salmén, L. Fibre morphological effects on mechano-sorptive creep. Wood Sci. Technol. 2010, 44, 475–483. [Google Scholar] [CrossRef]
- Lichtenegger, H.; Reiterer, A.; Stanzl-Tschegg, S.E.; Fratzl, P. Variation of cellulose microfibril angles in softwoods and hardwoods-A possible strategy of mechanical optimization. J. Struct. Biol. 1999, 128, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Bergander, A.; Salmén, L. Cell wall properties and their effects on the mechanical properties of fibers. J. Mater. Sci. 2002, 37, 151–156. [Google Scholar] [CrossRef]
- Salmén, L. Micromechanical understanding of the cell-wall structure. C. R. Biol. 2004, 327, 873–880. [Google Scholar] [CrossRef]
- Via, B.K.; So, C.L.; Shupe, T.F.; Groom, L.H.; Wikaira, J. Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position. Compos. Part A Appl. Sci. Manuf. 2009, 40, 60–66. [Google Scholar] [CrossRef]
- Moore, J.; Cown, D.; McKinley, R. Modelling spiral grain angle variation in New Zealand-grown radiata pine. N. Z. J. For. Sci. 2015, 45, 15. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Kojima, Y. Properties of cell wall constituents in relation to longitudinal elasticity of wood: Part 1. Formulation of the longitudinal elasticity of an isolated wood fiber. Wood Sci. Technol. 2002, 36, 55–74. [Google Scholar] [CrossRef]
Basic Density | |||||
---|---|---|---|---|---|
0.39 g cm−3 | 0.43 g cm−3 | ||||
Cutting Planes | Load | Modulus of Elasticity (GPa) | CV (%) | Modulus of Elasticity (GPa) | CV (%) |
Tangential | Control | 10.93 ± 1.91 a | 17.52 | 11.06 ± 2.12 c | 19.13 |
Load 1530 N | 10.95 ± 1.97 a | 17.99 | 10.94 ± 1.99 c | 18.22 | |
Control | 10.87 ± 1.67 a | 15.33 | 11.40 ± 2.61 c | 22.87 | |
Load 1170 N | 10.74 ± 1.66 a | 15.47 | 11.27 ± 2.47 c | 21.92 | |
Radial | Control | 8.48 ± 1.94 b | 22.91 | 11.21 ± 1.35 c | 12.08 |
Load 1530 N | 8.54 ± 1.87 b | 21.90 | 11.07 ± 1.31 c | 11.86 | |
Control | 8.82 ± 1.94 b | 22.03 | 11.36 ± 1.31 c | 11.50 | |
Load 1170 N | 8.76 ± 1.92 b | 21.88 | 11.29 ± 1.27 c | 11.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erazo, O.; Vergara-Figueroa, J.; Valenzuela, P.; Gacitúa, W. Effect of the Longitudinal Tensile Creep on the Stiffness of Radiata Pine (Pinus radiata D. Don). Materials 2022, 15, 4314. https://doi.org/10.3390/ma15124314
Erazo O, Vergara-Figueroa J, Valenzuela P, Gacitúa W. Effect of the Longitudinal Tensile Creep on the Stiffness of Radiata Pine (Pinus radiata D. Don). Materials. 2022; 15(12):4314. https://doi.org/10.3390/ma15124314
Chicago/Turabian StyleErazo, Oswaldo, Judith Vergara-Figueroa, Paulina Valenzuela, and William Gacitúa. 2022. "Effect of the Longitudinal Tensile Creep on the Stiffness of Radiata Pine (Pinus radiata D. Don)" Materials 15, no. 12: 4314. https://doi.org/10.3390/ma15124314
APA StyleErazo, O., Vergara-Figueroa, J., Valenzuela, P., & Gacitúa, W. (2022). Effect of the Longitudinal Tensile Creep on the Stiffness of Radiata Pine (Pinus radiata D. Don). Materials, 15(12), 4314. https://doi.org/10.3390/ma15124314