Effect of Sulfur Content in Sulfate-Rich Copper Tailings on the Properties of MgO-Activated Slag Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MASM Sample Preparation
2.3. Test and Characterization
2.3.1. Compressive Strength
2.3.2. X-ray Powder Diffraction (XRD)
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Mercury Intrusion Porosimetry (MIP)
3. Results and Discussion
3.1. Mineral Compositions of MASM
3.2. Microstructure Analysis of MASM Mortars
3.3. Compressive Strength of MASM Mortars
3.4. Pore Structure of MASM Mortars
4. Conclusions
- The incorporation of SRCT composite into MASM resulted in the additional production of expansive sulfate-containing products. Those sulfate-containing products were ettringite, gypsum, and hydroxyl-AFm. The original sulfates participating in the hydration of slag were a result of the oxidation of the pyrite in SRCTs. From this point of view, SRCTs substantially worked as an auxiliary activator for the MASMs.
- MASM mortars with SRCT composite possessed much higher compressive strengths. The higher sulfur content of SRCTs ensured a higher compressive strength of the MASMs. The 28d compressive strength of MASM increased by 33% to 83% using SRCT composites with sulfur contents of 5% to 20%.
- The pore structure of MASM was also significantly refined by the incorporation of SRCT composite. The major peaks of the MIP curves tended to shift to the side of smaller pore sizes when SRCT composite had higher sulfur contents. When SRCT composite replaced all the quartz sand, the total porosity further reduced from 9% to 5.6%. The refined microstructure was attributed to the additional formation of expansive sulfate-containing products induced by the incorporation of SRCT.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.P.; Zhang, Y.; Wang, J.X.; Xiao, K.Y.; Lou, D.B.; Ding, J.H.; Yin, J.N.; Xiang, J. Status and potential analysis of Copper mines in China. J. Geol. 2013, 37, 358–365. (In Chinese) [Google Scholar]
- Onuaguluchi, O.; Eren, Ö. Recycling of copper tailings as an additive in cement mortars. Constr. Build. Mater. 2012, 37, 723–727. [Google Scholar] [CrossRef]
- Wei, Z.; Yin, G.; Wang, J.G.; Wan, L.; Li, G. Design, construction and management of tailings storage facilities for surface disposal in China: Case studies of failures. Waste Manag. Res. 2013, 31, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, M.B.J.; Moncur, M.C.; Bain, J.G.; Jambor, J.L.; Ptacek, C.J.; Blowes, D.W. Geochemical and mineralogical aspects of sulfide mine tailings. Appl. Geochem. 2015, 57, 157–177. [Google Scholar] [CrossRef]
- Guzman, I.; Thorpe, S.J.; Papangelakis, V.G. Redox potential measurement during pressure oxidation (POX) of a refractory gold ore. Can. Met. Q. 2018, 57, 382–389. [Google Scholar] [CrossRef]
- Kaur, G.; Couperthwaite, S.J.; Hatton-Jones, B.W.; Millar, G.J. Alternative neutralisation materials for acid mine drainage treatment. J. Water Process Eng. 2018, 22, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Cihangir, F.; Ercikdi, B.; Kesimal, A.; Turan, A.; Deveci, H. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Miner. Eng. 2012, 30, 33–43. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, X.; Guo, L.; Zhang, S.; Chen, J. Strength and hydration products of cemented paste backfill from sulphide-rich tailings using reactive MgO-activated slag as a binder. Constr. Build. Mater. 2019, 203, 111–119. [Google Scholar] [CrossRef]
- Yin, S.; Shao, Y.; Wu, A.; Wang, Y.; Chen, X. Expansion and strength properties of cemented backfill using sulphidic mill tailings. Constr. Build. Mater. 2018, 165, 138–148. [Google Scholar] [CrossRef]
- Dong, Q.; Liang, B.; Jia, L.; Jiang, L. Effect of sulfide on the long-term strength of lead-zinc tailings cemented paste backfill. Constr. Build. Mater. 2019, 200, 436–446. [Google Scholar] [CrossRef]
- Bakharev, T. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 2005, 35, 658–670. [Google Scholar] [CrossRef]
- Karakoç, M.B.; Türkmen, I.; Maraş, M.M.; Kantarci, F.; Demirboʇa, R. Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram. Int. 2016, 42, 1254–1260. [Google Scholar] [CrossRef]
- Saavedra, W.G.V.; Angulo, D.E.; Mejía de Gutiérrez, R. Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack. J. Mater. Civ. Eng. 2016, 28, 04016148. [Google Scholar] [CrossRef]
- Adesina, A.; Kaze, C.R. Physico-mechanical and microstructural properties of sodium sulfate activated materials: A review. Constr. Build. Mater. 2021, 295, 123668. [Google Scholar] [CrossRef]
- Dener, M.; Karatas, M.; Mohabbi, M. Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate. Constr. Build. Mater. 2021, 304, 124671. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, J.; Zhang, S.; Guo, Z.; Ma, Z.; Sun, X.; Xing, J. Effect of sodium sulfate on the hydration and mechanical properties of lime-slag based eco-friendly binders. Constr. Build. Mater. 2020, 250, 118603. [Google Scholar] [CrossRef]
- Komljenović, M.; Bašcčarević, Z.; Marjanović, N.; Nikolić, V. External sulfate attack on alkali-activated slag. Constr. Build. Mater. 2013, 49, 31–39. [Google Scholar] [CrossRef]
- Jin, F.; Abdollahzadeh, A.; Al-Tabbaa, A. Effect of different MgO on the hydration of MgO-activated granulated ground blastfurnace slag paste. In Proceedings of the 3rd International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan, 18–22 August 2013. [Google Scholar]
- Jin, F.; Gu, K.; Al-Tabbaa, A. Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cem. Concr. Compos. 2015, 57, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.L.; Vo, D.H.; Tran, V.A.; Yehualaw, M.D. Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions. Constr. Build. Mater. 2018, 186, 503–513. [Google Scholar] [CrossRef]
- Park, S.; Park, H.M.; Yoon, H.N.; Seo, J.; Yang, C.M.; Provis, J.L.; Yang, B. Hydration kinetics and products of MgO-activated blast furnace slag. Constr. Build. Mater. 2020, 249, 118700. [Google Scholar] [CrossRef]
- Tan, H.; Deng, X.; He, X.; Zhang, J.; Zhang, X.; Su, Y.; Yang, J. Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate. Cem. Concr. Compos. 2019, 97, 387–398. [Google Scholar] [CrossRef]
- He, J.; Zheng, W.; Bai, W.; Hu, T.; He, J.; Song, X. Effect of reactive MgO on hydration and properties of alkali-activated slag pastes with different activators. Constr. Build. Mater. 2021, 271, 121608. [Google Scholar] [CrossRef]
- GBT18046-2008; Ground Granulated Blast Furnace Slag Used for Cement and Concrete. The Chinese National Standard: Beijing, China, 2008.
- Chen, Q.; Chen, H.; Wang, P.; Chen, X.; Chen, J. Effect of Sulphur-Containing Tailings Content and Curing Temperature on the Properties of M32.5 Cement Mortar. Materials 2021, 14, 5751. [Google Scholar] [CrossRef] [PubMed]
- GB/T 11837-2009; Test Methods of the Concrete Compressive Strength of Concrete Pipes for Water. Standardization Administration of China: Beijing, China, 2009.
- ASTM C 1365; Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-ray Diffraction Analysis. ASTM International: West Conshohocken, PA, USA, 2014.
- Brew, D.R.M.; Glasser, F.P. Synthesis and characterisation of magnesium silicate hydrate gels. Cem. Concr. Res. 2005, 35, 85–98. [Google Scholar] [CrossRef]
- Yi, Y.; Al-Tabbaa, A.; Liska, M. Properties and microstructure of GGBS-magnesia pastes. Adv. Cem. Res. 2014, 26, 114–122. [Google Scholar] [CrossRef]
- Song, S.; Sohn, D.; Jennings, H.M.; Mason, T.O. Hydration of alkali-activated ground granulated blast furnace slag. J. Mater. Sci. 2000, 35, 249–257. [Google Scholar] [CrossRef]
- Caldeira, C.L.; Ciminelli, V.S.T.; Dias, A.; Osseo-Asare, K. Pyrite oxidation in alkaline solutions: Nature of the product layer. Int. J. Miner. Process. 2003, 72, 373–386. [Google Scholar] [CrossRef]
- Zhang, M.H.; Li, H. Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr. Build. Mater. 2011, 25, 608–616. [Google Scholar] [CrossRef]
Oxide Composition | CaO | MgO | Al2O3 | SiO2 | SO3 | Fe2O3 |
---|---|---|---|---|---|---|
SRCTs | 10.30 | 4.95 | 5.16 | 22.05 | 21.1 | 30.53 |
Slag | 42.84 | 7.81 | 15.37 | 26.49 | - | 0.33 |
Fine pyrite | 0.70 | 0.30 | 2.10 | 8.30 | 47.30 | 41.40 |
Group | MgO | Slag | Water | Quartz Sand | SRCT | Fine Pyrite | Sulfur Content |
---|---|---|---|---|---|---|---|
M0S | 3.125 | 28.125 | 18.75 | 50.00 | 0 | 0 | 0% |
M5S | 3.125 | 28.125 | 18.75 | 30.77 | 19.23 | 0 | 5% |
M10S | 3.125 | 28.125 | 18.75 | 11.54 | 38.46 | 0 | 10% |
M13S | 3.125 | 28.125 | 18.75 | 0 | 50.00 | 0 | 13% |
M15S | 3.125 | 28.125 | 18.75 | 0 | 2.5 | 47.5 | 15% |
M20S | 3.125 | 28.125 | 18.75 | 0 | 8.75 | 41.25 | 20% |
Group | 5%S | 10%S | 13%S | 15%S | 20%S |
Migration rate | 4.23% | 8.31% | 11.15% | 14.43% | 17.21% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Yang, F.; Qian, X.; Fang, Y.; Li, J.; Chen, X.; Wang, Y. Effect of Sulfur Content in Sulfate-Rich Copper Tailings on the Properties of MgO-Activated Slag Materials. Materials 2022, 15, 4340. https://doi.org/10.3390/ma15124340
Chen P, Yang F, Qian X, Fang Y, Li J, Chen X, Wang Y. Effect of Sulfur Content in Sulfate-Rich Copper Tailings on the Properties of MgO-Activated Slag Materials. Materials. 2022; 15(12):4340. https://doi.org/10.3390/ma15124340
Chicago/Turabian StyleChen, Peiyuan, Fan Yang, Xin Qian, Yi Fang, Jin Li, Xueyan Chen, and Yonghui Wang. 2022. "Effect of Sulfur Content in Sulfate-Rich Copper Tailings on the Properties of MgO-Activated Slag Materials" Materials 15, no. 12: 4340. https://doi.org/10.3390/ma15124340
APA StyleChen, P., Yang, F., Qian, X., Fang, Y., Li, J., Chen, X., & Wang, Y. (2022). Effect of Sulfur Content in Sulfate-Rich Copper Tailings on the Properties of MgO-Activated Slag Materials. Materials, 15(12), 4340. https://doi.org/10.3390/ma15124340