Drop–Dry Deposition of Ni(OH)2 Precursors for Fabrication of NiO Thin Films
Abstract
:1. Introduction
2. Experimental Section
- series (a): Number of drop–dry cycles: 2, 3, 4, 5 (Ni(NO3)2: 10 mM, NaOH: 15 mM).
- series (b): Ni(NO3)2 concentrations: 5, 10, 15, 20 mM (NaOH: 10 mM, cycles: 2).
- series (c): NaOH concentrations: 10, 15, 17.5, 20 mM (Ni(NO3)2: 10 mM, cycles: 2).
3. Results and Discussion
3.1. Deposition Conditions
3.2. Characterization of As-Deposited and Annealed Films
3.3. ZnO/NiO Heterojunction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karpinski, A.; Ouldhamadouche, N.; Ferrec, A.; Cattin, L.; Richard-Plouet, M.; Brohan, L.; Djouadi, M.A.; Jouan, P.-Y. Optical characterization of transparent nickel oxide films deposited by DC current reactive sputtering. Thin Solid Film. 2011, 519, 5767–5770. [Google Scholar] [CrossRef]
- Hu, L.; Wei, R.H.; Tang, X.W.; Lu, W.J.; Zhu, X.B.; Sun, Y.P. Design strategy for p-type transparent conducting oxides. J. Appl. Phys. 2020, 128, 140902. [Google Scholar] [CrossRef]
- Fioretti, A.N.; Morales-Masis, M. Bridging the p-type transparent conductive materials gap: Synthesis approaches for disperse valence band materials. J. Photon. Energy 2020, 10, 042002. [Google Scholar] [CrossRef]
- Koyama, M.; Ichimura, M. Fabrication of ZnO/NiO transparent solar cells by eleasctrochemical deposition. Jpn. J. Appl. Phys. 2019, 58, 128003. [Google Scholar] [CrossRef]
- Karsthof, R.; Räcke, P.; Wenckstern, H.V.; Grundmann, M. Semi-transparent NiO/ZnO UV photovoltaic cells. Phys. Status Solidi A 2015, 213, 30–37. [Google Scholar] [CrossRef]
- Ohteki, Y.; Sugiyama, M. Electrical properties of ZnO:H films fabricated by RF sputtering deposition and fabrication of p-NiO/n-ZnO heterojunction devices. Jpn. J. Appl. Phys. 2018, 57, 071101. [Google Scholar] [CrossRef]
- Patel, M.; Kima, H.S.; Kim, J.; Yun, J.H.; Kim, S.J.; Choi, E.H.; Park, H.H. Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration. Sol. Energy Mater. Sol. Cells 2017, 170, 246–253. [Google Scholar] [CrossRef]
- Hasan, M.R.; Xie, T.; Barron, S.C.; Liu, G.; Nguyen, N.V.; Motayed, A.; Rao, M.V.; Debnath, R. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates. APL Mater. 2015, 3, 106101. [Google Scholar] [CrossRef]
- Kawade, D.; Moriyama, K.; Nakamura, F.; Chichibu, S.F.; Sugiyama, M. Fabrication of visible-light transparent solar cells composed of NiO/NixZn1-xO/ZnO heterostructures. Phys. Status Solidi C 2015, 12, 785–788. [Google Scholar] [CrossRef]
- Kim, D.Y.; Ryu, J.; Manders, J.; Lee, J.; So, F. Air-Stable, Solution-Processed Oxide p–n Heterojunction Ultraviolet Photodetector. ACS Appl. Mater. Interfaces 2014, 6, 1370–1374. [Google Scholar] [CrossRef]
- Xie, T.; Liu, G.; Wen, B.; Ha, J.Y.; Nguyen, N.V.; Motayed, A.; Debnath, R. Tunable Ultraviolet Photoresponse in Solution-Processed p–n Junction Photodiodes Based on Transition-Metal Oxides. ACS Appl. Mater. Interfaces 2015, 7, 9660–9667. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.A.; Ibupoto, Z.H.; Khan, A.; Nur, O.; Willander, M. Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures. Mater. Lett. 2013, 108, 149–152. [Google Scholar] [CrossRef]
- Shen, Y.; Yan, X.; Bai, Z.; Zheng, X.; Sun, Y.; Liu, Y.; Lin, P.; Chen, X.; Zhang, Y. A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. RSC Adv. 2015, 5, 5976–5981. [Google Scholar] [CrossRef]
- Hu, C.; Chu, K.; Zhao, Y.; Teoh, W.Y. Efficient Photoelectrochemical Water Splitting over Anodized p-Type NiO Porous Films. ACS Appl. Mater. Interfaces 2014, 6, 18558–18568. [Google Scholar] [CrossRef]
- Al-Akraa, I.M.; Asal, Y.M.; Khamis, S.D. Assembling of NiOx/MWCNTs-GC Anodic Nanocatalyst for Water Electrolysis Applications. Int. J. Electrochem. Sci. 2018, 13, 9712–9720. [Google Scholar] [CrossRef]
- Rajendran, R.; Yaakob, Z.; Teridi, M.A.M.; Rahamana, M.S.A.; Sopian, K. Preparation of nanostructured p-NiO/n-Fe2O3 heterojunction and study of their enhanced photoelectrochemical water splitting performance. Mater. Lett. 2014, 133, 123–126. [Google Scholar] [CrossRef]
- Baraik, K.; Singh, S.D.; Kumar, Y.; Ajimsha, R.S.; Misra, P.; Jha, S.N.; Ganguli, T. Epitaxial growth and band alignment properties of NiO/GaN heterojunction for light emitting diode applications. Appl. Phys. Lett. 2017, 110, 191603. [Google Scholar] [CrossRef]
- Zhou, F.; Gong, H.; Xu, W.; Yu, X.; Xu, Y.; Yang, Y.; Ren, F.; Gu, S.; Zheng, Y.; Zhang, R.; et al. 1.95-kV Beveled-Mesa NiO/β-Ga2O3 Heterojunction Diode With 98.5% Conversion Efficiency and Over Million-Times Overvoltage Ruggedness. IEEE Trans. Power Electron. 2022, 37, 1223–1227. [Google Scholar] [CrossRef]
- Bai, S.; Han, J.; Han, N.; Zhang, K.; Sun, J.; Sun, L.; Luo, R.; Li, D.; Chen, A. An α-Fe2O3/NiO p–n hierarchical heterojunction for the sensitive detection of trimethylamine. Inorg. Chem. Front. 2020, 7, 1532–1539. [Google Scholar] [CrossRef]
- Hotovy, I.; Rehacek, V.; Siciliano, P.; Capone, S.; Spiess, L. Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Film. 2002, 418, 9–15. [Google Scholar] [CrossRef]
- Bandara, J.; Weerasinghe, H. Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol. Energy Mater. Sol. Cells 2005, 85, 385–390. [Google Scholar] [CrossRef]
- Nakasa, A.; Usami, H.; Sumikura, S.; Hasegawa, S.; Koyama, T.; Suzuki, E. High Voltage Dye-sensitized Solar Cell using a Nanoporous NiO Photocathode. Chem. Lett. 2005, 34, 500–501. [Google Scholar] [CrossRef]
- Islam, M.B.; Yanagida, M.; Shirai, Y.; Nabetani, Y.; Miyano, K. NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega 2017, 2, 2291–2299. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Gong, H.; Zhou, H.; Zhang, J.; Ye, J.; Liu, Z.; Wang, C.; Zheng, X.; Zhang, R.; Hao, Y. Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiOx termination. Appl. Phys. Lett. 2022, 120, 092106. [Google Scholar] [CrossRef]
- Kuanr, S.K.; Babu, K.S. Structural and growth aspects of electron beam physical vapor deposited NiO-CeO2 nanocomposite films. J. Vac. Sci. Technol. A 2016, 34, 021507. [Google Scholar] [CrossRef]
- Salazar, P.; Rico, V.; González-Elipe, A.R. Non-enzymatic hydrogen peroxide detection at NiO nanoporous thin film-electrodes prepared by physical vapor deposition at oblique angles. Electrochim. Acta 2017, 235, 534–542. [Google Scholar] [CrossRef]
- Sato, H.; Minami, T.; Takata, S.; Yamada, T. Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 1993, 236, 27–31. [Google Scholar] [CrossRef]
- Usha, K.S.; Sivakumar, R.; Sanjeeviraja, C. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 2013, 114, 123501. [Google Scholar] [CrossRef]
- Reddy, A.M.; Reddy, A.S.; Lee, K.S.; Reddy, P.S. Growth and characterization of NiO thin films prepared by dc reactive magnetron sputtering. Solid State Sci. 2011, 13, 314–320. [Google Scholar] [CrossRef]
- Patil, P.S.; Kadam, L.D. Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl. Surf. Sci. 2002, 199, 211–221. [Google Scholar] [CrossRef]
- Reguig, B.A.; Khelil, A.; Cattin, L.; Morsli, M.; Bernède, J.C. Properties of NiO thin films deposited by intermittent spray pyrolysis process. Appl. Surf. Sci. 2007, 253, 4330–4334. [Google Scholar] [CrossRef]
- Cattin, L.; Reguig, B.A.; Khelil, A.; Morsli, M.; Benchouk, K.; Bernède, J.C. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions. Appl. Surf. Sci. 2008, 254, 5814–5821. [Google Scholar] [CrossRef]
- Zorkipli, N.N.M.; Kaus, N.H.M.; Mohamad, A.A. Synthesis of NiO Nanoparticles through Sol-gel Method. Procedia Chem. 2016, 19, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Sha, J.; Ma, X.; Yang, D. Synthesis of NiO nanowires by a sol-gel process. Mater. Lett. 2005, 59, 1967–1970. [Google Scholar] [CrossRef]
- Teoh, L.G.; Li, K.D. Synthesis and Characterization of NiO Nanoparticles by Sol–Gel Method. Mater. Trans. 2012, 53, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, T.; Harizanova, A.; Shipochka, M.; Vitanov, P. Nickel Oxide Films Deposited by Sol-Gel Method: Effect of Annealing Temperature on Structural, Optical, and Electrical Properties. Materials 2022, 15, 1742. [Google Scholar] [CrossRef]
- Koyama, M.; Ichimura, M. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films. Semicond. Sci. Technol. 2018, 33, 055011. [Google Scholar] [CrossRef]
- Zhao, L.; Su, G.; Liu, W.; Cao, L.; Wang, J.; Dong, Z.; Song, M. Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition. Appl. Surf. Sci. 2011, 257, 3974–3979. [Google Scholar] [CrossRef]
- Srinivasan, V.; Weidner, J.W. An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors. J. Electrochem. Soc. 1997, 144, L210–L213. [Google Scholar] [CrossRef]
- Nam, K.W.; Kim, K.B. A Study of the Preparation of NiOx Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism. J. Electrochem. Soc. 2002, 149, A346–A354. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Mi, R.; Deng, C.; Gao, P. An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis. Sens. Actuators B Chem. 2014, 191, 537–544. [Google Scholar] [CrossRef]
- Hall, D.S.; Lockwood, D.J.; Bock, C.; MacDougall, B.R. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. R. Soc. A 2015, 471, 20140792. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Ichimura, M. Fabrication of Transparent Mg(OH)2 Thin Films by Drop-Dry Deposition. Materials 2021, 14, 724. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Ichimura, M. Drop-dry deposition of Co3O4 and fabrication of heterojunction solar cells with electrochemically deposited ZnO. Semicond. Sci. Technol. 2021, 36, 095030. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; National Association of Corrosion Engineers: Houston, TX, USA, 1974; p. 336. [Google Scholar]
- Izaki, M.; Omi, T. Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films. J. Electrochem. Soc. 1996, 143, L53–L55. [Google Scholar] [CrossRef]
- Bernard, M.C.; Keddam, M.; Takenouti, H.; Bernard, P.; Sényarich, S. Electrochemical Behavior of Quasi-Spherical β - Ni(OH)2 Particles Studied by Roman Spectroscopy. J. Electrochem. Soc. 1996, 143, 2447. [Google Scholar] [CrossRef]
- Dietz, R.E.; Parisot, G.I.; Meixner, A.E. Infrared Absorption and Raman Scattering by Two-Magnon Processes in NiO. Phys. Rev. B 1971, 4, 2302–2310. [Google Scholar] [CrossRef]
- Kang, J.K.; Rhee, S.W. Chemical vapor deposition of nickel oxide films from Ni(C5H5)2/O2. Thin Solid Film. 2001, 391, 57–61. [Google Scholar] [CrossRef]
- Chen, H.L.; Lu, Y.M.; Hwang, W.S. Effect of Film Thickness on Structural and Electrical Properties of Sputter-Deposited Nickel Oxide Films. Mater. Trans. 2005, 46, 872–879. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Okada, T.; Ichimura, M. Drop–Dry Deposition of Ni(OH)2 Precursors for Fabrication of NiO Thin Films. Materials 2022, 15, 4513. https://doi.org/10.3390/ma15134513
Li T, Okada T, Ichimura M. Drop–Dry Deposition of Ni(OH)2 Precursors for Fabrication of NiO Thin Films. Materials. 2022; 15(13):4513. https://doi.org/10.3390/ma15134513
Chicago/Turabian StyleLi, Tong, Tetsuya Okada, and Masaya Ichimura. 2022. "Drop–Dry Deposition of Ni(OH)2 Precursors for Fabrication of NiO Thin Films" Materials 15, no. 13: 4513. https://doi.org/10.3390/ma15134513
APA StyleLi, T., Okada, T., & Ichimura, M. (2022). Drop–Dry Deposition of Ni(OH)2 Precursors for Fabrication of NiO Thin Films. Materials, 15(13), 4513. https://doi.org/10.3390/ma15134513