Multiobjective Optimization of Composite Wind Turbine Blade
Abstract
:1. Introduction
2. Assumptions Made during the Modeling of the Wind Turbine Blade
- shells (upper and lower surface);
- ribs (transverse stiffeners);
- shear webs (longitudinal stiffeners).
3. Materials and Methods
4. Formulation of Multiobjective Optimization Problem
- Minimization of frequencies of the blade vibrations.
- Maximization of output power.
- Minimization of material cost.
- Safeguarding stability of the blade.
- Fulfilment strength requirements.
- Ω—the domain of possible solutions,
- X—column matrix of design variables,
- w—column array weights of the respective objective functions, which meet the assumptions ,
- —standardized objective function corresponds to the mass of the blade,
- m—the current mass of the blade,
- —the permissible mass of the blade,
- —standardized objective function corresponds to the transverse displacement of the tip blade,
- —the current transverse displacement of the tip blade,
- —the permissible transverse displacement of the tip blade.
- (1)
- The strength criterion: the stress generated in the blade cannot exceed the permissible stress, namely, fulfillment with suitable strength requirements of the structure. The values of the permissible stress were determined based on the material properties of individual materials, composite layers, used for the construction of the wind turbine blade.
- (2)
- The global stability criterion: the local displacement of the wind turbine blade cannot exceed the permissible transverse local displacement of the blade -global stability must be confirmed:
- (3)
- The local stability criterion: the displacement of the tip blade cannot exceed the permissible displacement of the tip blade ; local stability must be confirmed:
- (4)
- The mass of the wind turbine blade must not exceed the permissible mass of the blade .
- (5)
- The blade deformation must be smaller than the allowable the blade deformation -compliance with the local stability conditions of the structure:
- (6)
- The vibration criterion: estrangement of the natural frequencies of the wind turbine blade from the harmonic vibration associated with rotor rotation:
5. Results and Conclusions
- The total mass of the wind turbine blade obtained after optimization is 10.7% greater than before the optimization, which increases the cost of the material. The greater mass of the wind turbine blade contributes to an increase in its stiffness. As a result, the maximum displacements of both nodes in the middle of the blade span and nodes in the tip blade were reduced by 16.7% and 15.1%, respectively.
- The blade tip displacement for the considered Pareto-optimal solution does not exceed the limit value; compared to the value obtained for the initial model, this value was reduced by more than 15%. This is due to the increase in the mass of the wind turbine blade, which is related to the stiffness of the structure.
- As a result of the optimization process, a wind turbine blade structure was obtained which is only 1% higher in the value of the 1st natural frequency. On the other hand, the natural frequencies for the second and fourth form increased by 8.2%.
- The range of natural frequencies of the numerical model of a wind turbine blade with geometrical and material features obtained as a result of the conducted optimization process does not coincide with the range of resonance frequencies. This is due to an increase in the mass of the wind turbine blade.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
d | the current transverse local displacement of the blade |
the current transverse displacement of the tip blade | |
the permissible transverse local displacement of the blade | |
the permissible displacement of the tip blade | |
the current the blade deformation | |
the allowable the blade deformation | |
the frequency of harmonic vibration | |
the l-th natural frequencies of the blade | |
m | the current mass of the blade |
the permissible mass of the blade | |
the current stress in the blade | |
the permissible stress in the blade | |
w | column array weights of the respective objective functions |
Ω | the domain of possible solutions |
X | column matrix of design variables |
the lower bound of the design variables | |
the upper bound of the design variables |
References
- Boretti, A.; Castelletto, S. Cost of wind energy generation should include energy storage allowance. Sci. Rep. 2020, 10, 2978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.O.L. Aerodynamics of Wind Turbines, 3rd ed.; Routledge: Oxfordshire, UK, 2015. [Google Scholar] [CrossRef]
- Moné, C.; Mauren, H.; Bolinger, M.; Rand, J.; Heimiller, D.; Ho, J. Cost of Wind Energy Review. 2015. Available online: www.nrel.gov/docs/fy17osti/66861.pdf (accessed on 1 June 2021).
- Goeij, W.C.; Tooren, M.J.; Beukers, A. Implementation of bending torsion coupling in the design of a Wind Turbine Rotor. Appl. Energy 1999, 63, 191–207. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Jørgensen, E.; Debel, C.P. Improved Design of Large Wind Turbine Blade of Fiber Composites Based on Studies of Scale Effects (Phase 1); Summary Report Risø-R-1390(EN); Risø National Laboratory: Roskilde, Denmark, 2004. [Google Scholar]
- Owaisur, R.S. Identification and characterization of mechanical and structural properties against static damage and fatigue of a composite floating wind turbine blade. In Mechanical Engineering; [physics.class-ph]; Université de Bretagne occidentale: Brest, France, 2019. [Google Scholar]
- Krzyżak, A.; Kosicka, E.; Szczepaniak, R. Research into the Effect of Grain and the Content of Alundum on Tribological Properties and Selected Mechanical Properties of Polymer Composites. Materials 2020, 13, 5735. [Google Scholar] [CrossRef] [PubMed]
- Mrówka, M.; Machoczek, T.; Jureczko, P.; Joszko, K.; Gzik, M.; Wolański, W.; Wilk, K. Mechanical, Chemical, and Processing Properties of Specimens Manufactured from Poly-Ether-Ether-Ketone (PEEK) Using 3D Printing. Materials 2021, 14, 2717. [Google Scholar] [CrossRef]
- Mrówka, M.; Jaszcz, K.; Skonieczna, M. Anticancer activity of functional polysuccinates with N-acetyl-cysteine in side-chains. Eur. J. Pharmacol. 2020, 885, 173501. [Google Scholar] [CrossRef]
- Sławski, S.; Woźniak, A.; Bazan, P.; Mrówka, M. The Mechanical and Tribological Properties of Epoxy-Based Composites Filled with Manganese-Containing Waste. Materials 2022, 15, 1579. [Google Scholar] [CrossRef]
- Krzyżak, A.; Relich, S.; Kosicka, E.; Szczepaniak, R.; Mucha, M. Selected Construction Properties of Hybrid Epoxy Composites Reinforced with Carbon Fiber and Alumina. Adv. Sci. Technol. Res. J. 2022, 16, 240–248. [Google Scholar] [CrossRef]
- Lenża, J.; Sozańska, M.; Rydarowski, H. Methods for Limiting the Flammability of High-Density Polyethylene with Magnesium Hydroxide. In Reactions and Mechanisms in Thermal Analysis of Advanced Materials, 1st ed.; Tiwari, A., Raj, B., Eds.; Scrivener Publishing LLC.: Beverly, MA, USA, 2015; Volume 1, pp. 85–101. [Google Scholar] [CrossRef]
- Kosicka, E.; Borowiec, M.; Kowalczuk, M.; Krzyzak, A.; Szczepaniak, R. Influence of the Selected Physical Modifier on the Dynamical Behavior of the Polymer Composites Used in the Aviation Industry. Materials 2020, 13, 5479. [Google Scholar] [CrossRef]
- Merkel, K.; Lenża, J.; Rydarowski, H.; Pawlak, A.; Wrzalik, R. Characterization of structure and properties of polymer films made from blends of polyethylene with poly(4-methyl-1-pentene). J. Mater. Res. 2017, 32, 451–464. [Google Scholar] [CrossRef]
- Kosicka, E.; Borowiec, M.; Kowalczuk, M.; Krzyzak, A. Dynamic Behavior of Aviation Polymer Composites at Various Weight Fractions of Physical Modifier. Materials 2021, 14, 6897. [Google Scholar] [CrossRef]
- Szczepaniak, R.; Komorek, A.; Przybyłek, P.; Krzyżak, A.; Roskowicz, M.; Godzimirski, J.; Pinkiewicz, E.; Jaszczak, W.; Kosicka, E. Research into mechanical properties of an ablative composite on a polymer matrix base with aerogel particles. Compos. Struct. 2022, 280, 114855. [Google Scholar] [CrossRef]
- Krzyzak, A.; Racinowski, D.; Szczepaniak, R.; Mucha, M.; Kosicka, E. The Impact of Selected Atmospheric Conditions on the Process of Abrasive Wear of CFRP. Materials 2020, 13, 3965. [Google Scholar] [CrossRef]
- Rehman, S.; Alam, M.M.; Alhems, L.M.; Rafique, M.M. Horizontal axis wind turbine blade design methodologies for efficiency enhancement—A Review. Energies 2018, 11, 506. [Google Scholar] [CrossRef] [Green Version]
- Subadra, S.P.; Griskevicius, P. Sustainability of polymer composites and its critical role in revolutionising wind power for green future. Sustain. Technol. Green Econ. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Thomas, L.; Ramachandra, M. Advanced materials for wind turbine blade- A Review. Mater. Today: Proc. 2018, 5, 2635–2640. [Google Scholar] [CrossRef]
- Bashir, M. Principle Parameters and Environmental Impacts that Affect the Performance of Wind Turbine: An Overview. Arab. J. Sci. Eng. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Cooperman, A.; Eberle, A.; Lantz, E. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resour. Conserv. Recycl. 2021, 168, 105439. [Google Scholar] [CrossRef]
- Cousins, D.S.; Suzuki, Y.; Murray, R.E.; Samaniuk, J.R.; Stebner, A.P. Recycling glass fiber thermoplastic composites from wind turbine blades. J. Clean. Prod. 2019, 209, 1252–1263. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B.F. Materials for Wind Turbine Blades: An Overview. Materials 2017, 10, 1285. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, N.; Reynolds, N.; Pharaoh, N.W.; Wood, P.K.C.; Smith, G.F. Strain rate dependency of the shear properties of a highly oriented thermoplastic composite material using a contacting displacement measurement methodology—Part B: Shear damage evolution. Compos. Sci. Technol. 2004, 65, 739–748. [Google Scholar] [CrossRef]
- Maalawi, K.Y.; Badr, M.A. A practical approach for selecting optimum wind rotors. Renew. Energy. 2003, 28, 803–822. [Google Scholar] [CrossRef]
- Advances in Wind Turbine Blade Design and Materials; Brøndsted, P.; Nijssen, R.P.L. (Eds.) Woodhead Publishing Series in Energy; Elsevier Science: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zhao, D.; Han, N.; Goh, E. Wind Turbines and Aerodynamics Energy Harvesters, 1st ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- McGugan, M. Design of Wind Turbine Blades. In MARE-WINT; Ostachowicz, W., McGugan, M., Schröder-Hinrichs, J.U., Luczak, M., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Chen, K.; Li, Y.; Yao, W. Investigation on aerodynamic performance of wind turbine blades coupled with airfoil and herringbone groove structure. J. Renew. Sustain. Energy 2021, 13, 053301. [Google Scholar] [CrossRef]
- Jasa, J.; Bortolotti, P.; Zalkind, D.; Barter, G. Effectively using multifidelity optimization for wind turbine design. Wind Energy Sci. 2022, 7, 991–1006. [Google Scholar] [CrossRef]
- Pourrajabian, A.; Nazmi, A.; Peyman, A.; Ahmadizadeh, M.; Wood, D. Aero-structural design and optimization of a small wind turbine blade. Renew. Energy 2016, 87, 837–848. [Google Scholar] [CrossRef]
- Ning, S.A.; Damiani, R.; Moriarty, P.J. Objectives and constraints for wind turbine optimization. J. Solar Energy Eng. 2014, 136, 041010. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.X.; Zhang, X.; Wang, S.F. Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm. Renew. Energy 2016, 96, 676–686. [Google Scholar] [CrossRef]
- Jureczko, M.; Pawlak, M.; Mężyk, A. Optimisation of wind turbine blades. J. Mater. Proc. Technol. 2005, 167, 463–471. [Google Scholar] [CrossRef]
- Khamlaj, T.A.; Rumpfkeil, M.P. Analysis and optimization of ducted wind turbines. Energy 2018, 162, 1234–1252. [Google Scholar] [CrossRef]
- Rehman, S.; Salman, A.K. Multi-criteria wind turbine selection using weighted sum approach. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Jureczko, M.; Mężyk, A. Multidisciplinary optimization of wind turbine blades with respect to minimize vibrations. In Proceedings of the 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea, 21–25 May 2007. [Google Scholar]
- Zhu, J.; Cai, X.; Pan, P.; Gu, R. Multi-objective structural optimization design of horizontal-axis Wind Turbine Blades using the non-dominated sorting Genetic Algorithm II and Finite Element Method. Energies 2014, 7, 988–1002. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Zhu, J.; Pan, P.; Gu, R.R. Structural optimization design of horizontal-axis wind turbine blades using a particle swarm optimization algorithm and finite element method. Energies 2012, 5, 4683–4696. [Google Scholar] [CrossRef]
- Soni, V.; Sharma, A.; Singh, V. A Critical Review on Nature Inspired Optimization Algorithms. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 1099, p. 012055. [Google Scholar]
- Johnvictor, A.C.; Durgamahanthi, V.; Pariti Venkata, R.M.; Jethi, N. Critical review of bio-inspired optimization techniques. Wiley Interdiscip. Rev. Comput. Stat. 2020, 14, e1528. [Google Scholar] [CrossRef]
- Odili, J.B.; Noraziah, A.; Ambar, R.; Wahab, M.H.A. A Critical Review of Major Nature-Inspired Optimization Algorithms. Eurasia Proc. Math. Sci. Technol. Educ. 2018, 2, 376–394. [Google Scholar]
- Fan, X.; Sayers, W.; Zhang, S.; Han, Z.; Ren, L.; Chizari, H. Review and Classification of Bio-inspired Algorithms and Their Applications. J. Bionic Eng. 2020, 17, 611–631. [Google Scholar] [CrossRef]
- Tita, V.; Carvalho, J.; Lirani, J. A procedure to estimate the dynamic behavior of fiber reinforced composite beams submitted to flexural vibration. J. Mater. Res. 2001, 4, 315–321. [Google Scholar] [CrossRef]
- Griffin, D. Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades; SAND Report SAND2002-1879; Sandia National Lab.: Albuquerque, NM, USA; Livermore, CA, USA, 2002; Unlimited Release. [Google Scholar]
- Katsaprakakis, D.A.; Papadakis, N.; Ntintakis, I. A Comprehensive Analysis of Wind Turbine Blade Damage. Energies 2021, 14, 5974. [Google Scholar] [CrossRef]
- Sobieszczański-Sobieski, J.; Morris, A.; Tooren, M.J.L.; La Rocca, G.; Yao, W. Multidisciplinary Design Optimization Supported by Knowledge Based Engineering, 1st ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Norske Veritas (Organization); Forskningscenter Risø. Guidelines for Design of Wind Turbines, 2nd ed.; DNV/RISØ; Jydsk Centraltrykkeri: Viby, Denmark, 2002. [Google Scholar]
- Bachorz, P.; Marcinkowska, M. Relation between efficiency of a genetic algorithm and assumed optimization parameters. In Proceedings of the Scientific Conference Applied Mechanics, Ostrava, Czech Republic, 8–11 April 2002; pp. 11–16. [Google Scholar]
Data | Value | Unit |
---|---|---|
minimum chord | 1 | m |
maximum chord | 4 | m |
Minimum twist angle | 0 | ° |
Maximum twist angle | 19.22 | ° |
Parameters | Value |
---|---|
Number of individuals | 20 |
Number of populations (stop criterion) | 50 |
Probability of crossover | 0.7 |
Probability of mutation | 0.3 |
Design Variable | Lower Bound | Upper Bound |
---|---|---|
The thickness of ribs, in (m) | 0.01 | 0.10 |
The thickness of shear webs, in (m) | 0.01 | 0.10 |
Number of ribs (-) | 2 | 26 |
Arrangement of ribs, in (m) | 0.25 | 26.75 |
Parameter | Value | Unit |
---|---|---|
The permissible stress | 375 | MPa |
The allowable deformation | 0.5 | % |
The frequency of harmonic vibration | 0.3 ÷ 0.6 | Hz |
The permissible transverse displacement of the tip blade | ± 7 | m |
The permissible transverse local displacement of the blade | ± 7 | m |
The permissible mass of the blade | 2830 | kg |
Design Variable | Value |
---|---|
The thickness of ribs, in (m) | 0.0963 |
The thickness of shear webs, in (m) | 0.012 |
number of ribs (-) | 14 |
Parameter | Initial Model | Model after Optimization | Change |
---|---|---|---|
the maximum displacement of nodes in the middle of the blade span | 0.8543 | 0.7120 | 16.7% |
the maximum displacement of nodes in the tip blade | 6.8355 | 5.8024 | 15.1% |
maximum stress | 227 | 204 | 10% |
maximum strain (%) | 0.4842 | 0.4428 | 8.5% |
blade mass | 1118.8 | 1238.3 | ↑ 10.7% |
eigenfrequencies values | |||
1st mode shape | 0.2784 | 0.2811 | ↑ 1% |
2nd mode shape | 0.973 | 1.053 | ↑ 8.2% |
3rd mode shape | 1.117 | 1.170 | ↑ 4.7% |
4th mode shape | 2.526 | 2.548 | ↑ 0.9% |
5th mode shape | 3.508 | 3.798 | ↑ 8.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jureczko, M.; Mrówka, M. Multiobjective Optimization of Composite Wind Turbine Blade. Materials 2022, 15, 4649. https://doi.org/10.3390/ma15134649
Jureczko M, Mrówka M. Multiobjective Optimization of Composite Wind Turbine Blade. Materials. 2022; 15(13):4649. https://doi.org/10.3390/ma15134649
Chicago/Turabian StyleJureczko, Mariola, and Maciej Mrówka. 2022. "Multiobjective Optimization of Composite Wind Turbine Blade" Materials 15, no. 13: 4649. https://doi.org/10.3390/ma15134649
APA StyleJureczko, M., & Mrówka, M. (2022). Multiobjective Optimization of Composite Wind Turbine Blade. Materials, 15(13), 4649. https://doi.org/10.3390/ma15134649