Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equations of Piezoelectricity and Electrochemical Impedance Spectroscopy Method
2.2. Assumptions and Considerations
2.3. Sample Preparation and Experimental Setup
3. Results and Discussion
3.1. Experimental Results
3.2. Literature Comparison
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Xia, R.; Lebrun, L.; Anderson, D.; Shrout, T.R. Piezoelectric materials for high power, high temperature applications. Mater. Lett. 2005, 59, 3471–3475. [Google Scholar] [CrossRef]
- Cegla, F.B.; Cawley, P.; Allin, J.; Davies, J. High-temperature (>500 °C) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Peshkovsky, A.S.; Peshkovsky, S.L. Efficient Cooling of Piezoelectric Transducers. U.S. Patent US9142751B2, 22 September 2015. [Google Scholar]
- Zhang, S.; Yu, F. Piezoelectric Materials for High Temperature Sensors. J. Am. Ceram. Soc. 2011, 94, 3153–3170. [Google Scholar] [CrossRef]
- Smith, R.T.; Welsh, F.S. Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate. J. Appl. Phys. 1971, 42, 2219–2230. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Levinstein, H.J.; Reddy, J.M. Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1200 °C. J. Phys. Chem. Solids 1966, 27, 1019–1026. [Google Scholar] [CrossRef]
- Nassau, K.; Levinstein, H.J.; Loiacono, G.M. Ferroelectric lithium niobate. 2. Preparation of single domain crystals. J. Phys. Chem. Solids 1966, 27, 989–996. [Google Scholar] [CrossRef]
- Atkinson, I.; Gregory, C.; Kelly, S.P.; Kirk, K.J. Ultrasmart: Developments in Ultrasonic Flaw Detection and Monitoring for High Temperature Plant Applications. In Proceedings of the Volume 9: Eighth International Conference on Creep and Fatigue at Elevated Temperatures; ASMEDC: San Antonio, TX, USA, 2007; pp. 573–585. [Google Scholar] [CrossRef]
- Amini, M.H.; Sinclair, A.N.; Coyle, T.W. A New High-Temperature Ultrasonic Transducer for Continuous Inspection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 448–455. [Google Scholar] [CrossRef]
- Bergmann, G. The electrical conductivity of LiNbO3. Solid State Commun. 1968, 6, 77–79. [Google Scholar] [CrossRef]
- Weidenfelder, A.; Shi, J.; Fielitz, P.; Borchardt, G.; Becker, K.D.; Fritze, H. Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures. Solid State Ionics 2012, 225, 26–29. [Google Scholar] [CrossRef]
- Mohimi, A.; Gan, T.H.; Balachandran, W. Development of high temperature ultrasonic guided wave transducer for continuous in service monitoring of steam lines using non-stoichiometric lithium niobate piezoelectric ceramic. Sensors Actuators Phys. 2014, 216, 432–442. [Google Scholar] [CrossRef]
- Kazys, R.; Vaskeliene, V. High Temperature Ultrasonic Transducers: A Review. Sensors 2021, 21, 3200. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.; Bouchy, S.; Bélanger, P.; Zednik, R.J. High-temperature electrical conductivity in piezoelectric lithium niobate. J. Appl. Phys. 2022, 131, 194102. [Google Scholar] [CrossRef]
- Warner, A.W.; Onoe, M.; Coquin, G.A. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m). J. Acoust. Soc. Am. 1967, 42, 1223–1231. [Google Scholar] [CrossRef]
- Kovacs, G.; Anhorn, M.; Engan, H.; Visintini, G.; Ruppel, C. Improved material constants for LiNbO/sub 3/ and LiTaO/sub 3/. In Proceedings of the IEEE Symposium on Ultrasonics, Honolulu, HI, USA, 4–7 December 1990; Volume 1, pp. 435–438. [Google Scholar] [CrossRef]
- Kushibiki, J.; Takanaga, I.; Arakawa, M.; Sannomiya, T. Accurate measurements of the acoustical physical constants of LiNbO/sub 3/ and LiTaO/sub 3/ single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1999, 46, 1315–1323. [Google Scholar] [CrossRef]
- Ledbetter, H.; Ogi, H.; Nakamura, N. Elastic, anelastic, piezoelectric coefficients of monocrystal lithium niobate. Mech. Mater. 2004, 36, 941–947. [Google Scholar] [CrossRef]
- Andrushchak, A.S.; Mytsyk, B.G.; Laba, H.P.; Yurkevych, O.V.; Solskii, I.M.; Kityk, A.V.; Sahraoui, B. Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature. J. Appl. Phys. 2009, 106, 073510. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Kong, L.; Song, W.; Jiang, C.; Tian, S.; Yu, F.; Qin, L.; Wang, C.; Zhao, X. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications. J. Mater. 2019, 5, 73–80. [Google Scholar] [CrossRef]
- Yamada, T.; Niizeki, N.; Toyoda, H. Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals. Jpn. J. Appl. Phys. 1967, 6, 151–155. [Google Scholar] [CrossRef]
- de Castilla, H.; Bélanger, P.; Zednik, R.J. High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method. J. Appl. Phys. 2017, 122, 244103. [Google Scholar] [CrossRef] [Green Version]
- Tomeno, I.; Matsumura, S. Elastic and Dielectric Properties of LiNbO3. J. Phys. Soc. Jpn. 1987, 56, 163–177. [Google Scholar] [CrossRef]
- de Castilla, H.; Bélanger, P.; Zednik, R.J. Generalized Dynamic Analytical Model of Piezoelectric Materials for Characterization Using Electrical Impedance Spectroscopy. Materials 2019, 12, 2502. [Google Scholar] [CrossRef] [Green Version]
- ANSI/IEEE Standard 176-1987; IEEE Standard on Piezoelectricity. IEEE: Piscataway, NJ, USA, 1988. [CrossRef]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Macdonald, J.R.; Johnson, W.B. Fundamentals of Impedance Spectroscopy. In Impedance Spectroscopy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 1–20. [Google Scholar]
- Sugii, K.; Koizumi, H.; Miyazawa, S.; Kondo, S. Temperature variations of lattice parameters of LiNbO3, LiTaO3 and Li (Nb 1-y Tay) O3 solid-solutions. J. Cryst. Growth 1976, 33, 199–202. [Google Scholar] [CrossRef]
- Wong, K.K. Properties of Lithium Niobate; IET: London, UK, 2002. [Google Scholar]
- Singh, K.; Saodekar, P.V.; Bhoga, S.S. Effect of stoichiometry on the thermal expansion coefficients of lithium niobate single crystals. Bull. Mater. Sci. 1998, 21, 469–474. [Google Scholar] [CrossRef]
- Boysen, H.; Senyshyn, A.; Sugak, D.Y. High temperature structure and properties of lithium niobate. In Proceedings of the 2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE), Lviv, Ukraine, 3–7 September 2012; pp. 147–148. [Google Scholar] [CrossRef]
- Umarov, B.S.; Vetelino, J.F.; Abdullaev, N.S.; Anikiev, A.A. Temperature dependence of the dielectric constant and i.r. reflection spectrum of LiNbO3 by raman scattering. Solid State Commun. 1980, 36, 465–468. [Google Scholar] [CrossRef]
- Das, D.; Jacobs, T.; Barbour, L.J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nat. Mater. 2010, 9, 36–39. [Google Scholar] [CrossRef]
Li:Nb | |||
---|---|---|---|
(unitless) | (g/cm) | (10/ °C) | (10/ °C) |
48.68:51.32 | 4.61 | ||
49.50:50.50 | 4.45 |
Temperature (°C) | 25 | 47 | 67 | 87 | 107 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(10/ °C) | 14.1 | 14.6 | 15.2 | 15.7 | 16.1 | 17.8 | 19 | 20.1 | 21 | 22 | 23 | 23.9 | 24.9 |
(10/ °C) | 4.1 | 4.2 | 4.3 | 4.3 | 4.3 | 4.0 | 3.5 | 2.7 | 1.6 | 0.4 | −1.1 | −2.8 | −4.6 |
25 °C | 100 °C | 200 °C | 300 °C | 400 °C | 500 °C | 600 °C | 700 °C | 800 °C | 900 °C | |
---|---|---|---|---|---|---|---|---|---|---|
Constant electric field | ||||||||||
Elastic stiffness (10) | (N/m) | |||||||||
192 | 190 | 187 | 184 | 181 | 179 | 176 | 172 | 171 | 170 | |
54.7 | 54.5 | 54.3 | 53.2 | 52.4 | 40.0 | 39.3 | 39.2 | 38.3 | 36.9 | |
75.1 | 76.6 | 77.1 | 76.7 | 76.3 | 77.3 | 75.4 | 75.6 | 75.3 | 75.5 | |
8.6 | 8.5 | 8.5 | 8.7 | 8.6 | 8.5 | 8.5 | 8.8 | 9.0 | 9.2 | |
231 | 230 | 229 | 227 | 223 | 219 | 216 | 213 | 213 | 210 | |
59.5 | 59.0 | 57.3 | 56.1 | 55.9 | 55.6 | 55.5 | 55.5 | 57.4 | 58.4 | |
Piezoelectric stress | ||||||||||
constant | (C/m) | |||||||||
3.75 | 3.76 | 3.79 | 3.77 | 3.74 | 3.70 | 3.71 | 3.66 | 3.66 | 3.66 | |
2.42 | 2.43 | 2.40 | 2.36 | 2.34 | 2.39 | 2.34 | 2.35 | 2.36 | 2.28 | |
0.20 | 0.20 | 0.19 | 0.19 | 0.18 | 0.19 | 0.20 | 0.22 | 0.22 | 0.23 | |
1.71 | 1.70 | 1.64 | 1.76 | 1.98 | 2.30 | 2.70 | 2.75 | 2.90 | 3.13 | |
Constant strain | ||||||||||
Dielectric constant | (10 F/m) | |||||||||
0.398 | 0.408 | 0.416 | 0.444 | 0.476 | 0.508 | 0.576 | 0.657 | 0.740 | 0.866 | |
0.213 | 0.217 | 0.225 | 0.234 | 0.284 | 0.374 | 0.469 | 0.499 | 0.682 | 1.026 | |
Dielectric loss | (unitless) | |||||||||
0.00002 | 0.00003 | 0.00007 | 0.0001 | 0.010 | 0.018 | 0.025 | 0.032 | 0.060 | 0.150 | |
0.00004 | 0.00005 | 0.0001 | 0.0001 | 0.017 | 0.034 | 0.036 | 0.041 | 0.079 | 0.190 | |
Electrical conductivity | (10 S/m) | |||||||||
0.001 | 0.002 | 0.002 | 0.002 | 0.023 | 0.230 | 0.340 | 0.550 | 1.650 | 8.666 |
Present Work | [5] | [15] | [16] | [17] | [18] | [19] | [22] | [20] | |
---|---|---|---|---|---|---|---|---|---|
Constant electric field | Smith | Warner | Kovacs | Kushibiki | Ledbetter | Andrushchak | De Castilla | Chen | |
Elastic stiffness | (10 N/m) | (1971) | (1967) | (1990) | (1999) | (2004) | (2009) | (2017) | (2019) |
192 | 203 | 203 | 198 | 199 | 200 | 199 | 203 | 194 | |
54.7 | 57.3 | 53.0 | 54.7 | 54.7 | 55.3 | 54.7 | 59.9 | 42.8 | |
75.1 | 75.2 | 75.0 | 65.1 | 68.0 | 67.7 | 70.0 | 72.5 | 52.2 | |
8.6 | 8.5 | 9.0 | 7.9 | 7.8 | 8.7 | 7.9 | 8.0 | 8.4 | |
231 | 242 | 245 | 228 | 234 | 235 | 240 | 236 | 223 | |
59.5 | 59.5 | 60.0 | 60.0 | 59.9 | 59.5 | 59.9 | 58.7 | 61.5 | |
Piezoelectric stress | |||||||||
constant | (C/m) | ||||||||
3.75 | 3.76 | 3.7 | 3.69 | 3.66 | 3.65 | 3.67 | 3.89 | 3.85 | |
2.42 | 2.44 | 2.5 | 2.42 | 2.41 | 2.39 | 2.38 | 2.46 | 2.30 | |
0.20 | 0.23 | 0.2 | 0.30 | 0.33 | 0.31 | 0.34 | 0.18 | ||
1.71 | 1.33 | 1.3 | 1.77 | 1.89 | 1.72 | 1.60 | 1.66 | ||
Constant strain | |||||||||
Dielectric constant | (10 F/m) | ||||||||
0.398 | 0.392 | 0.390 | 0.404 | 0.398 | 0.399 | 0.389 | 0.423 | 0.389 | |
0.213 | 0.247 | 0.257 | 0.233 | 0.236 | 0.232 | 0.247 | 0.248 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchy, S.; Zednik, R.J.; Bélanger, P. Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method. Materials 2022, 15, 4716. https://doi.org/10.3390/ma15134716
Bouchy S, Zednik RJ, Bélanger P. Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method. Materials. 2022; 15(13):4716. https://doi.org/10.3390/ma15134716
Chicago/Turabian StyleBouchy, Sevan, Ricardo J. Zednik, and Pierre Bélanger. 2022. "Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method" Materials 15, no. 13: 4716. https://doi.org/10.3390/ma15134716
APA StyleBouchy, S., Zednik, R. J., & Bélanger, P. (2022). Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method. Materials, 15(13), 4716. https://doi.org/10.3390/ma15134716