Damage Characterization of Carbon Fiber Composite Pressure Vessels Based on Modal Acoustic Emission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Pencil Lead Breakage (PLB) Experiments to Verify the Modal Separation Method
2.2. In-Plane Bending Test of Carbon Fiber Composite Laminates
2.3. Damage Experiment of Carbon Fiber Composite Material Vessel
2.4. Analytical Method
2.4.1. Empirical Mode Decomposition (EMD) Theory
2.4.2. Damage Modal Characteristics of Composite Material
2.4.3. MAE Parameter Establishment
- (1)
- Set the time domain window according to the arrival time of the modal transient waveform distribution;
- (2)
- Perform modal separation on the signal to obtain the modal component waveforms distributed under the time domain window;
- (3)
- The first wave packet is the priority selection object. If the amplitude of the first wave packet is less than 1/10 of the peak amplitude, select the wave packet with the largest amplitude.
3. Results and Discussion
3.1. Verification of the Modal Separation Method
3.2. Mode Analysis of Delamination Damage
3.3. Damage Identification and Evaluation of Carbon Fiber Composite Pressure Vessels
4. Conclusions
- (1)
- The proposed modal separation method is accurate. The damage signal can be analyzed using this method in the bending AE monitoring experiment of carbon fiber composite laminate. The AE signal source of delamination damage produces excitation similar to that of in-plane action, mainly A0 mode propagation.
- (2)
- A comparison of the MAE parameters WTA and WTE of the signal in the bending test and load correlation showed that the A0 mode is dominant in the delamination damage; this finding is the same as the conclusion of the modal separation method. This shows that the establishment of WTA and WTE parameters is reliable.
- (3)
- The modal feature criterion algorithm can more accurately identify the three types of damage caused by carbon fiber composite vessels during pressurization than the analysis of AE parameters. Because there is a certain cumulative threshold of fiber fracture damage, the evaluation of the damage state of pressure vessels can be based on the threshold of fiber fracture damage, and the damage process can be well characterized using WTE and WTA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rafiee, R.; Torabi, M.A. Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 2018, 185, 573–583. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrog. Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Rafiee, R.; Rashedi, H.; Rezaee, S. Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure. Front. Struct. Civil. Eng. 2020, 14, 1349–1358. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, J.; Chen, H.; Liu, P. Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm. Int. J. Hydrog. Energy 2010, 35, 2840–2846. [Google Scholar] [CrossRef]
- Chang, R.R. Experimental and theoretical analyses of first-ply failure of laminated composite pressure vessels. Compos. Struct. 2000, 49, 237–243. [Google Scholar] [CrossRef]
- Kabir, M.Z. Finite element analysis of composite pressure vessels with a load sharing metallic liner. Compos. Struct. 2000, 49, 247–255. [Google Scholar] [CrossRef]
- Berro Ramirez, J.P.; Halm, D.; Grandidier, J.-C.; Villalonga, S.; Nony, F. 700 bar type IV high pressure hydrogen storage vessel burst–Simulation and experimental validation. Int. J. Hydrog. Energy 2015, 40, 13183–13192. [Google Scholar] [CrossRef]
- Nebe, M.; Soriano, A.; Braun, C.; Middendorf, P.; Walther, F. Analysis on the mechanical response of composite pressure vessels during internal pressure loading: FE modeling and experimental correlation. Compos. Part B Eng. 2021, 212, 108550. [Google Scholar] [CrossRef]
- Vasic, D.; Bilas, V.; Ambrus, D. Pulsed eddy-current nondestructive testing of ferromagnetic tubes. IEEE Trans. Instrum. Meas. 2004, 53, 1289–1294. [Google Scholar] [CrossRef]
- Prager, J.; Kitze, J.; Acheroy, C.; Brackrock, D.; Brekow, G.; Kreutzbruck, M. SAFT and TOFD—A Comparative Study of Two Defect Sizing Techniques on a Reactor Pressure Vessel Mock-up. J. Nondestruct. Eval. 2013, 32, 1–13. [Google Scholar] [CrossRef]
- Hao, J.-C.; Leng, J.-S.; Wei, Z. Non-destructive Evaluation of Composite Pressure Vessel by Using FBG Sensors. Chin. J. Aeronaut. 2007, 20, 120–123. [Google Scholar] [CrossRef] [Green Version]
- ISO 16148; Gas Cylinders—Refillable Seamless Steel Gas Cylinders and Tubes—AE Examination (AT) and Follow-Up Ultrasonic Examination (UT) for Periodic Inspection and Testing. ISO: Geneva, Switzerland, 2016.
- Duffner, E.; Gregor, C.; Bohse, J. Monitoring of the production quality of fibre-reinforced pressure vessels using acoustic emission testing; Ueberwachung der Fertigungsqualitaet von Faserverbund-Druckbehaeltern mittels Schallemissionspruefung. In Proceedings of the 18th Colloquium Acoustic Emission, Wetzlar, Germany, 27–28 October 2011. [Google Scholar]
- Chou, H.Y.; Mouritz, A.P.; Bannister, M.K.; Bunsell, A.R. Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure. Compos. Part A Appl. Sci. Manuf. 2015, 70, 111–120. [Google Scholar] [CrossRef]
- Lin, S.; Jia, X.; Sun, H.; Sun, H.; Hui, D.; Yang, X. Thermo-mechanical properties of filament wound CFRP vessel under hydraulic and atmospheric fatigue cycling. Compos. Part B Eng. 2013, 46, 227–233. [Google Scholar] [CrossRef]
- Favre, J.P.; Laizet, J.C. Amplitude and counts per event analysis of the acoustic emission generated by the transverse cracking of cross-ply CFRP. Compos. Sci. Technol. 1989, 36, 27–43. [Google Scholar] [CrossRef]
- Surgeon, M.; Vanswijgenhoven, E.; Wevers, M.; Van Der Biest, O. Acoustic emission during tensile testing of SiC-fibre-reinforced BMAS glass-ceramic composites. Compos. Part A Appl. Sci. Manuf. 1997, 28, 473–480. [Google Scholar] [CrossRef]
- Loutas, T.H.; Kostopoulos, V. Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: Acoustic emission monitoring and damage mechanisms evolution. Compos. Sci. Technol. 2009, 69, 265–272. [Google Scholar] [CrossRef]
- Li, L.; Lomov, S.V.; Yan, X.; Carvelli, V. Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites. Compos. Struct. 2014, 116, 286–299. [Google Scholar] [CrossRef]
- Marec, A.; Thomas, J.H.; El Guerjouma, R. Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 2008, 22, 1441–1464. [Google Scholar] [CrossRef]
- Surgeon, M.; Wevers, M. Modal analysis of acoustic emission signals from CFRP laminates. NDT E Int. 1999, 32, 311–322. [Google Scholar] [CrossRef]
- Jiao, J.; He, C.; Wu, B.; Fei, R.; Wang, X. Application of wavelet transform on modal acoustic emission source location in thin plates with one sensor. Int. J. Press. Vessel. Pip. 2004, 81, 427–431. [Google Scholar] [CrossRef]
- Dahmene, F.; Yaacoubi, S.; El Mountassir, M.; Bendaoud, N.; Langlois, C.; Bardoux, O. On the modal acoustic emission testing of composite structure. Compos. Struct. 2016, 140, 446–452. [Google Scholar] [CrossRef]
- Prosser, W.H.; Hamstad, M.A.; Gary, J.; O’Gallagher, A. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms. J. Nondestruct. Eval. 1999, 18, 83–90. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Hamstad, M.A.; Horn, S. Finite element modeling of lamb wave propagation in anisotropic hybrid materials. Compos. Part B Eng. 2013, 53, 249–257. [Google Scholar] [CrossRef]
- Toyama, N.; Takatsubo, J. Lamb wave method for quick inspection of impact-induced delamination in composite laminates. Compos. Sci. Technol. 2004, 64, 1293–1300. [Google Scholar] [CrossRef]
- Ramadas, C.; Janardhan Padiyar, M.; Balasubramaniam, K.; Joshi, M.; Krishnamurthy, C.V. Delamination Size Detection using Time of Flight of Anti-symmetric (Ao) and Mode Converted Ao mode of Guided Lamb Waves. J. Intell. Mater. Syst. Struct. 2010, 21, 817–825. [Google Scholar] [CrossRef]
- Baker, C.; Morscher, G.N.; Pujar, V.V.; Lemanski, J.R. Transverse cracking in carbon fiber reinforced polymer composites: Modal acoustic emission and peak frequency analysis. Compos. Sci. Technol. 2015, 116, 26–32. [Google Scholar] [CrossRef]
- Martínez-Jequier, J.; Gallego, A.; Suárez, E.; Juanes, F.J.; Valea, Á. Real-time damage mechanisms assessment in CFRP samples via acoustic emission Lamb wave modal analysis. Compos. Part B Eng. 2015, 68, 317–326. [Google Scholar] [CrossRef]
- Ono, K.; Gallego, A. Attenuation of Lamb waves in CFRP plates. J. Acoust. Emission 2012, 30, 109–123. [Google Scholar]
- Hamdi, S.E.; Le Duff, A.; Simon, L.; Plantier, G.; Sourice, A.; Feuilloy, M. Acoustic emission pattern recognition approach based on Hilbert–Huang transform for structural health monitoring in polymer-composite materials. Appl. Acoust. 2013, 74, 746–757. [Google Scholar] [CrossRef]
- Huang, T.-L.; Lou, M.-L.; Chen, H.-P.; Wang, N.-B. An orthogonal Hilbert-Huang transform and its application in the spectral representation of earthquake accelerograms. Soil Dyn. Earthq. Eng. 2018, 104, 378–389. [Google Scholar] [CrossRef]
- Teolis, A.; John, J. Benedetto. In Computational Signal Processing with Wavelets; Birkhäuser: Boston, MA, USA, 1998; Volume 182, pp. 171–261. [Google Scholar]
- Haase, M.; Widjajakusuma, J. Damage identification based on ridges and maxima lines of the wavelet transform. Int. J. Eng. Sci. 2003, 41, 1423–1443. [Google Scholar] [CrossRef]
- Gorman, M.R. Plate wave acoustic emission. J. Acoust. Soc. Am. 1991, 90, 358–364. [Google Scholar] [CrossRef]
- Pashmforoush, F.; Fotouhi, M.; Ahmadi, M. Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm. J. Reinf. Plast. Compos. 2012, 31, 671–680. [Google Scholar] [CrossRef]
- Mahdian, A.; Yousefi, J.; Nazmdar, M.; Karimi, N.Z.; Ahmadi, M.; Minak, G. Damage evaluation of laminated composites under low-velocity impact tests using acoustic emission method. J. Compos. Mater. 2016, 51, 479–490. [Google Scholar] [CrossRef]
Project | Channel | Threshold (dB) | Sampling Rate (MSPS) | Pre-Trigger (μs) | PDT (μs) | HDT (μs) | HLT (μs) |
---|---|---|---|---|---|---|---|
parameter | 2 | 35 | 2 | 256 | 100 | 200 | 400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Liu, X.; Li, W.; Guo, F.; Hong, C.; Liu, Y.; Yang, C. Damage Characterization of Carbon Fiber Composite Pressure Vessels Based on Modal Acoustic Emission. Materials 2022, 15, 4783. https://doi.org/10.3390/ma15144783
Jiang P, Liu X, Li W, Guo F, Hong C, Liu Y, Yang C. Damage Characterization of Carbon Fiber Composite Pressure Vessels Based on Modal Acoustic Emission. Materials. 2022; 15(14):4783. https://doi.org/10.3390/ma15144783
Chicago/Turabian StyleJiang, Peng, Xiaodong Liu, Wei Li, Fuping Guo, Chuan Hong, Yubin Liu, and Chang Yang. 2022. "Damage Characterization of Carbon Fiber Composite Pressure Vessels Based on Modal Acoustic Emission" Materials 15, no. 14: 4783. https://doi.org/10.3390/ma15144783
APA StyleJiang, P., Liu, X., Li, W., Guo, F., Hong, C., Liu, Y., & Yang, C. (2022). Damage Characterization of Carbon Fiber Composite Pressure Vessels Based on Modal Acoustic Emission. Materials, 15(14), 4783. https://doi.org/10.3390/ma15144783