Calculation Model of Mechanical and Sealing Properties of NiTi Alloy Corrugated Gaskets under Shape Memory Effect and Hyperelastic Coupling: I Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Finite Element Analysis Method of NiTi Alloy Corrugation
2.3. Finite Element Analysis Method of NiTi Alloy Gasket
3. Results
3.1. Verification of the Finite Element Analysis Method of NiTi Alloy Corrugation
3.2. Effect of Gasket Structure on Mechanical Properties
3.2.1. Plate Thickness
3.2.2. Gasket Height
3.2.3. Corrugation Pitch
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mir-Haidari, S.E.; Behdinan, K. Nonlinear effects of bolted flange connections in aeroengine casing assemblies. Mech. Syst. Signal Process. 2022, 166, 108433. [Google Scholar] [CrossRef]
- Beghini, M.; Bertini, L.; Santus, C.; Guglielmo, A.; Mariotti, G. Partially open crack model for leakage pressure analysis of bolted metal-to-metal flange. Eng. Fract. Mech. 2015, 144, 16–31. [Google Scholar] [CrossRef]
- Yin, T.; Wang, X.Y.; Zhu, H.P. A probabilistic approach for the detection of bolt loosening in periodically supported structures endowed with bolted flange joints. Mech. Syst. Signal Process. 2019, 128, 588–616. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Ojha, M.; Garudapalli, A.; Gupta, A.K. Microstructural, mechanical and strain hardening behaviour of NiTi alloy subjected to constrained groove pressing and ageing treatment. J. Mater. Process. Technol. 2021, 294, 117–132. [Google Scholar] [CrossRef]
- Jiang, D.; Xiao, Y. Modelling on grain size dependent thermomechanical response of superelastic NiTi shape memory alloy. Int. J. Solids Struct. 2021, 210–211, 170–182. [Google Scholar] [CrossRef]
- Silva, J.D.; Resende, P.; Garcia, P.R.; Lopes, N.; Santos, L.A.; Buono, V.T.L. Fatigue resistance of dual-phase NiTi wires at different maximum strain amplitudes. Int. J. Fatigue 2019, 125, 97–100. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Postnikov, I.; Korpala, G.; Kawalla, R.; Prahl, U.; Yusupov, V.; Prokoshkin, S. Deformation Behavior, Structure and Properties of an Equiatomic Ti–Ni Shape Memory Alloy Compressed in a Wide Temperature Range. Trans. Indian Inst. Met. 2021, 74, 2419–2426. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Kawalla, R.; Korpala, G.; Prahl, U.; Yusupov, V.; Prokoshkin, S. Deformation Behavior, Structure, and Properties of an Aging Ti-Ni Shape Memory Alloy after Compression Deformation in a Wide Temperature Range. JOM J. Miner. Met. Mater. Soc. 2021, 5, 620–629. [Google Scholar] [CrossRef]
- Tanaka, T.; Takada, T.; Sunao, K.; Maruyama, E. Spiral-Shaped Gasket Using Shape Memory Alloy. Japan Patent Priority No. JP19920249587, 12 April 1994. [Google Scholar]
- Efremov, A. Negative Creep Gasket with Core of Shape Memory Alloy. U.S. Patent Appl. No. 11/405 722, 18 October 2007. [Google Scholar]
- Efremov, A. Bolted flanged connection for critical engineering application. In Proceedings of the PVP 2006, Vancoucer, BC, Canada, 23–27 July 2006. [Google Scholar]
- Efremov, A. Method to Limit a Creep of Bolts and Gaskets of Bolted Flanged Connections. U.S. Patent Appl. No. 12/148 800, 21 August 2008. [Google Scholar]
- Efremov, A. High Temperature Negative Creep Gasket and Manufacture Same. U.S. Patent Appl. No. 12/319 206, 28 May 2009. [Google Scholar]
- Arnold, M.S. Ring Joint Gasket. U.S. Patent Appl. No. 06/588 372, 5 November 1985. [Google Scholar]
- Tan, W.; Xu, J.; Zhou, X.; Deng, W.; Yu, X.; Zhang, B.; Wang, X.; Zhang, C. Structure Optimization and Sealing Performance of Double Corrugated Self-Sealing Composite Gasket. IOP Conf. Ser. Earth Environ. Sci. 2021, 714, 032080. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Yang, Y.; Xie, Y.; Chen, J.; Sun, L.; Long, Y. Applicaiton of NiTi memory alloy dish gasket in power grid. IOP Conf. Ser. Earth Environ. Sci. 2019, 295, 032081. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Xie, Y.; Liu, Y.; Long, Y. Study on the self-suppression heating effect of NiTi shape memory alloy dish gasket. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Chongqing, China, 15–16 March 2017; Volume 2017, pp. 1–6. [Google Scholar]
- Tatsuoka, T.; Takagi, Y.; Sawa, T. Sealing performance of pipe flange connections with shape memory alloy gaskets under internal pressure. Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP 2004, 478, 41–47. [Google Scholar]
- Takagi, Y.; Tatsuoka, T.; Kawasaki, N.; Sawa, T. Stress Analysis and Sealing Performance of Pipe Flange Connections with NiTi Shape Memory Alloy Gasket. In Proceedings of the ASME 2007 Pressure Vessels and Piping Conference, San Antonio, TX, USA, 22–26 July 2007. [Google Scholar]
- Takagi, Y.; Tatsuoka, T.; Sawa, T. The Effect of the Thermal Expansion Coefficient on the Sealing Performance of Pipe Flange Connections with NiTi Shape Memory Alloy Gaskets. In Proceedings of the ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference, Vancouver, BC, Canada, 23–27 July 2006. [Google Scholar]
- Zhan, Y.; He, L.; Lu, X.; Zhu, X.; Chen, Q. The Effect of Ageing Treatment on Shape-Setting and Shape Memory Effect of a NiTi SMA Corrugated Structure. Adv. Mater. Sci. Eng. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Lu, X.; Li, G.; Liu, L.; Zhu, X.; Tu, S.T. Effect of ambient temperature on compressibility and recovery of NiTi shape memory alloys as static seals. Adv. Mech. Eng. 2017, 9, 168781401769228. [Google Scholar] [CrossRef]
- Lu, X.; Li, G.; Liu, L.; Zhu, X.; Tu, S.T. Effect of Aging Treatment on the Compressibility and Recovery of NiTi Shape Memory Alloys as Static Seals. J. Mater. Eng. Perform. 2017, 26, 3025–3033. [Google Scholar] [CrossRef]
- Ould-Brahim, N.; Bouzid, A.; Brailovski, V. Load Recovery of a Bolted Joint with a Shape Memory Alloy Stud. In Proceedings of the ASME 2011 Pressure Vessels and Piping Conference, Baltimore, MD, USA, 17–21 July 2011. [Google Scholar]
- Ould-Brahim, N.; Bouzid, A.H.; Brailovski, V. On the use of shape memory alloy studs to recover load loss in bolted joints. J. Press. Vessel Technol. Trans. ASME 2013, 135, 021203. [Google Scholar] [CrossRef]
- Niccoli, F.; Garion, C.; Maletta, C.; Cangialosi, C.; Infantino, A.; Danzeca, S.; Chiggiato, P. Particle radiation effects on shape memory alloy couplers for ultra-high vacuum sealing: A preliminary study. Smart Mater. Struct. 2019, 28, 085023. [Google Scholar] [CrossRef]
- Niccoli, F.; Garion, C.; Maletta, C.; Chiggiato, P. Shape-memory alloy rings as tight couplers between ultrahigh-vacuum pipes: Design and experimental assessment. J. Vac. Sci. Technol. A Vac. Surf. Film. 2017, 35, 031601. [Google Scholar] [CrossRef]
- Niccoli, F.; Garion, C.; Maletta, C.; Sgambitterra, E.; Furgiuele, F.; Chiggiato, P. Beam-pipe coupling in particle accelerators by shape memory alloy rings. Mater. Des. 2017, 114, 603–611. [Google Scholar] [CrossRef]
- Tabesh, M.; Boyd, J.; Atli, K.C.; Karaman, I.; Lagoudas, D. Design, fabrication, and testing of a multiple-actuation shape memory alloy pipe coupler. J. Intell. Mater. Syst. Struct. 2017, 29, 1165–1182. [Google Scholar] [CrossRef]
- He, L.; Lu, X.; Zhu, X.; Chen, Q. Influence of Structural Parameters of Shape Memory Alloy Corrugated Gaskets on the Contact Pressure of Bolted Flange Joints. Adv. Mater. Sci. Eng. 2021, 2021, 5552569. [Google Scholar] [CrossRef]
Ni | Co | Cu | Cr | Fe | Nb | C | H | O | N | Ti |
---|---|---|---|---|---|---|---|---|---|---|
55.59 | 0.005 | 0.005 | 0.005 | 0.012 | 0.005 | 0.046 | 0.001 | 0.03 | 0.001 | margin |
Physical Quantity | Value |
---|---|
Density/(g/cm3) | 6.45 |
Young’s modulus of pure martensite/GPa | 45 |
Young’s modulus of pure austenite/GPa | 61 |
Poisson’s ratio | 0.33 |
Influence coefficient of martensite/(MPa/K) | 15.8 |
Influence coefficient of austenite/(MPa/K) | 15.8 |
Maximum residual strain | 0.023 |
Plastic limit/MPa (120 °C) | 521 |
Plastic limit/MPa (20 °C) | 618 |
No. | T (mm) | H (mm) | P (mm) | DG (mm) | SG_PRE (MPa) | SG_OPT (MPa) | ||||
---|---|---|---|---|---|---|---|---|---|---|
FEM | Theoretical Result | Relative Error (%) | FEM | Theoretical Result | Relative Error (%) | |||||
1 | 0.3 | 2 | 3 | 0.2 | 76.24 | 73.36 | 3.8 | 142.62 | 129.49 | 9.2 |
2 | 0.6 | 2 | 3 | 0.2 | 282.81 | 295.05 | 4.3 | 817.35 | 869.13 | 6.3 |
3 | 0.5 | 3 | 3 | 0.2 | 394.04 | 353.68 | 10.2 | 952.41 | 888.72 | 6.7 |
4 | 0.5 | 5 | 3 | 0.2 | 194.62 | 204.09 | 4.9 | 636.50 | 708.02 | 11.2 |
5 | 0.5 | 3 | 2 | 0.2 | 225.01 | 208.15 | 7.5 | 682.62 | 646.92 | 5.2 |
6 | 0.5 | 3 | 3.5 | 0.2 | 280.73 | 325.90 | 16.1 | 689.12 | 744.67 | 8.1 |
7 | 0.5 | 3 | 4 | 0.2 | 262.13 | 231.08 | 11.8 | 466.97 | 483.76 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Liu, Y.; Li, M.; Lu, X.; Zhu, X. Calculation Model of Mechanical and Sealing Properties of NiTi Alloy Corrugated Gaskets under Shape Memory Effect and Hyperelastic Coupling: I Mechanical Properties. Materials 2022, 15, 4836. https://doi.org/10.3390/ma15144836
Zhu L, Liu Y, Li M, Lu X, Zhu X. Calculation Model of Mechanical and Sealing Properties of NiTi Alloy Corrugated Gaskets under Shape Memory Effect and Hyperelastic Coupling: I Mechanical Properties. Materials. 2022; 15(14):4836. https://doi.org/10.3390/ma15144836
Chicago/Turabian StyleZhu, Lingxue, Yang Liu, Mingxuan Li, Xiaofeng Lu, and Xiaolei Zhu. 2022. "Calculation Model of Mechanical and Sealing Properties of NiTi Alloy Corrugated Gaskets under Shape Memory Effect and Hyperelastic Coupling: I Mechanical Properties" Materials 15, no. 14: 4836. https://doi.org/10.3390/ma15144836
APA StyleZhu, L., Liu, Y., Li, M., Lu, X., & Zhu, X. (2022). Calculation Model of Mechanical and Sealing Properties of NiTi Alloy Corrugated Gaskets under Shape Memory Effect and Hyperelastic Coupling: I Mechanical Properties. Materials, 15(14), 4836. https://doi.org/10.3390/ma15144836