Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CKF
2.3. Characterizations
3. Results
3.1. Overview of Fabrication and Nanostructure
3.2. Microwave-Absorbing Performance
3.3. Microwave Attenuation Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, M.A.; Salleh, W.N.W.; Jaafar, J.; Ismail, A.F.; Mutalib, M.A.; Mohamad, A.B.; Zain, M.M.; Awang, N.A.; Hir, Z.A.M. Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra. Carbohydr. Polym. 2017, 157, 1892–1902. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.J.; Cheng, X.Y.; Yu, R.H.; Stucky, G.D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623. [Google Scholar] [CrossRef]
- Cao, M.-S.; Cai, Y.-Z.; He, P.; Shu, J.-C.; Cao, W.-Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Gusmão, R. Recent advances in the electromagnetic interference shielding of 2D materials beyond graphene. ACS Appl. Electron. Mater. 2020, 2, 3048–3071. [Google Scholar] [CrossRef]
- Pluss, T.; Zimmer, F.; Hehn, T.; Murk, A. Characterisation and Comparison of Material Parameters of 3D-Printable Absorbing Materials. Materials 2022, 15, 1503. [Google Scholar] [CrossRef]
- Wang, G.Z.; Peng, X.G.; Yu, L.; Wan, G.P.; Lin, S.W.; Qin, Y. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition. J. Mater. Chem. A 2015, 3, 2734–2740. [Google Scholar] [CrossRef]
- Luo, C.J.; Jiao, T.; Tang, Y.S.; Kong, J. Excellent Electromagnetic Wave Absorption of Iron-Containing SiBCN Ceramics at 1158 K High-Temperature. Adv. Eng. Mater. 2018, 20, 1701168. [Google Scholar] [CrossRef]
- Sun, G.B.; Dong, B.X.; Cao, M.H.; Wei, B.Q.; Hu, C.W. Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, γ-Fe2O3, and Fe with High Performance of Microwave Absorption. Chem. Mater. 2011, 23, 1587–1593. [Google Scholar] [CrossRef]
- Saini, P.; Aror, M. Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes. New Polym. Spec. Appl. 2012, 3, 73–112. [Google Scholar]
- Meng, F.B.; Wang, H.G.; Huang, F.; Guo, Y.F.; Wang, Z.Y.; Hui, D.; Zhou, Z.W. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B 2018, 137, 260–277. [Google Scholar] [CrossRef]
- Wang, G.H.; Ong, S.J.H.; Zhao, Y.; Xu, Z.J.; Ji, G.B. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 2020, 8, 24368–24387. [Google Scholar] [CrossRef]
- Peymanfar, R.; Javanshir, S.; Naimi-Jamal, M.R.; Tavassoli, S.H. Morphology and medium influence on microwave characteristics of nanostructures: A review. J. Mater. Sci. 2021, 56, 17457–17477. [Google Scholar] [CrossRef]
- Huang, L.N.; Chen, C.G.; Li, Z.J.; Zhang, Y.P.; Zhang, H.; Lu, J.G.; Ruan, S.C.; Zeng, Y.-J. Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 2020, 31, 162001. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-P.; Li, Z.B.; Liu, M.H.; Zhang, X.Y.; Chen, Y.S.; Xue, H.; Ye, E.Y.; Luque, R. Biomass-Derived Carbonaceous Materials: Recent Progress in Synthetic Approaches, Advantages, and Applications. ACS Sustain. Chem. Eng. 2019, 7, 4564–4585. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y.Q.; Balasubramanian, R. Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: A critical review. J. Mater. Chem. A 2021, 9, 24759–24802. [Google Scholar] [CrossRef]
- Du, Y.C. Advances in Carbon-Based Microwave Absorbing Materials. Materials 2022, 15, 1359. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Cheng, Y.; Liu, W.; Yang, L.J.; Zhang, B.S.; Wang, L.P.; Ji, G.B.; Xu, Z.J. Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption. Nano-Micro Lett. 2019, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.B.; Zhou, E.Z.; Liu, Y.J.; Gao, W.W.; Ying, J.; Chen, Z.C.; Gao, C. Wood-based straightway channel structure for high performance microwave absorption. Carbon 2017, 124, 492–498. [Google Scholar] [CrossRef]
- Wu, Z.C.; Tian, K.; Huang, T.; Hu, W.; Xie, F.F.; Wang, J.J.; Su, M.X.; Li, L. Hierarchically Porous Carbons Derived from Biomasses with Excellent Microwave Absorption Performance. ACS Appl. Mater. Interfaces 2018, 10, 11108–11115. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, L.X.; Zhu, H.L.; Guan, Y.K.; Zhang, Q.T. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418. [Google Scholar] [CrossRef]
- Negi, P.; Chhantyal, A.K.; Dixit, A.K.; Kumar, S.; Kumar, A. Activated carbon derived from mango leaves as an enhanced microwave absorbing material. Sustain. Mater. Technol. 2021, 27, e00244. [Google Scholar] [CrossRef]
- Yuan, Y.; Ding, Y.J.; Wang, C.H.; Xu, F.; Lin, Z.S.; Qin, Y.Y.; Li, Y.; Yang, M.L.; He, X.D.; Peng, Q.Y.; et al. Multifunctional Stiff Carbon Foam Derived from Bread. ACS Appl. Mater. Interfaces 2016, 8, 16852–16861. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, J.J.; Wang, Z.J.; Li, Y.B.; He, X.D.; Yuan, Y. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 2019, 143, 507–516. [Google Scholar] [CrossRef]
- Fang, J.Y.; Shang, Y.S.; Chen, Z.; Wei, W.; Hu, Y.; Yue, X.G.; Jiang, Z.H. Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. J. Mater. Chem. C 2017, 5, 4695–4705. [Google Scholar] [CrossRef]
- Wang, H.G.; Meng, F.B.; Li, J.Y.; Li, T.; Chen, Z.J.; Luo, H.B.; Zhou, Z.W. Carbonized Design of Hierarchical Porous Carbon/Fe3O4@Fe Derived from Loofah Sponge to Achieve Tunable High-Performance Microwave Absorption. ACS Sustain. Chem. Eng. 2018, 6, 11801–11810. [Google Scholar] [CrossRef]
- Sun, J.M.; Wu, Z.W.; Ma, C.H.; Xu, M.C.; Luo, S.; Li, W.; Liu, S.X. Biomass-derived tubular carbon materials: Progress in synthesis and applications. J. Mater. Chem. A 2021, 9, 13822–13850. [Google Scholar] [CrossRef]
- Ma, X.H.; Shen, B.; Zhang, L.H.; Chen, Z.P.; Liu, Y.F.; Zhai, W.T.; Zheng, W.G. Novel Straw-Derived Carbon Materials for Electromagnetic Interference Shielding: A Waste-to-Wealth and Sustainable Initiative. ACS Sustain. Chem. Eng. 2019, 7, 9663–9670. [Google Scholar] [CrossRef]
- Wang, B.; Karthikeyan, R.; Lu, X.-Y.; Xuan, J.; Leung, M.K.H. Hollow Carbon Fibers Derived from Natural Cotton as Effective Sorbents for Oil Spill Cleanup. Ind. Eng. Chem. Res. 2013, 52, 18251–18261. [Google Scholar] [CrossRef]
- Sun, H.; Ji, T.; Bi, H.J.; Xu, M.; Cai, L.P.; Manzo, M. Synergistic effect of carbon nanotubes and wood-derived carbon scaffold on natural rubber-based high-performance thermally conductive composites. Compos. Sci. Technol. 2021, 213, 108963. [Google Scholar] [CrossRef]
- Cheng, M.R.; Su, H.; Xiong, P.X.; Zhao, X.X.; Xu, Y.H. Molten Lithium-Filled Three-Dimensional Hollow Carbon Tube Mats for Stable Lithium Metal Anodes. ACS Appl. Energy Mater. 2019, 2, 8303–8309. [Google Scholar] [CrossRef]
- Zhou, M.; Gu, W.; Wang, G.; Zheng, J.; Pei, C.; Fan, F.; Ji, G. Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding. J. Mater. Chem. A 2020, 8, 24267–24283. [Google Scholar] [CrossRef]
- Song, P.; Cui, J.W.; Di, J.; Liu, D.B.; Xu, M.Z.; Tang, B.J.; Zeng, Q.S.; Xiong, J.; Wang, C.D.; He, Q.; et al. Carbon Microtube Aerogel Derived from Kapok Fiber: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. ACS Nano 2020, 14, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yuan, H.; Chen, S.Q.; Zheng, C.; Wu, X.K.; Li, Z.Q.; Liang, C.Y.; Dai, P.Q.; Wang, Q.T.; Ma, X.; et al. Cost-Effective, High-Yield Production of Biotemplated Catalytic Tubular Micromotors as Self-Propelled Microcleaners for Water Treatment. ACS Appl. Mater. Interfaces 2021, 13, 31226–31235. [Google Scholar] [CrossRef] [PubMed]
- Song, S.K.; Zhao, T.T.; Zhu, W.T.; Qiu, F.; Wang, Y.Q.; Dong, L.J. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity. ACS Appl. Mater. Interfaces 2019, 11, 20828–20837. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.; Zheng, Y.A.; Wang, A.Q. Preparation and oil absorbency of kapok-g-butyl methacrylate. Environ. Technol. 2018, 39, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.A.; Wang, W.B.; Huang, D.J.; Wang, A.Q. Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem. Eng. J. 2012, 191, 154–161. [Google Scholar] [CrossRef]
- Wang, W.B.; Wang, F.F.; Kang, Y.R.; Wang, A.Q. Au nanoparticles decorated Kapok fiber by a facile noncovalent approach for efficient catalytic decoloration of Congo Red and hydrogen production. Chem. Eng. J. 2014, 237, 336–343. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhao, P.F.; He, D.N.; Cheng, Y.; Liao, L.S.; Li, S.D.; Luo, Y.Y.; Peng, Z.; Li, P.W. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance. Phys. Chem. Chem. Phys. 2018, 20, 14155–14165. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Xie, W.H.; Song, S.K.; Zhang, Y.; Dong, L.J. In-Situ Growth and Graphitization Synthesis of Porous Fe3O4/Carbon Fiber Composites Derived from Biomass as Lightweight Microwave Absorber. ACS Sustain. Chem. Eng. 2019, 7, 5318–5328. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Cheng, Y.; Ma, J.N.; Zhang, Y.N.; Ji, G.B.; Du, Y.W. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 2018, 339, 432–441. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, Y.L.; Wang, Q.Y.; Jia, C.W.; Cai, P.; Chen, G.; Dong, C.J.; Guan, H.T. Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties. RSC Adv. 2019, 9, 9126–9135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Gao, X.; Zhou, H.W.; Wu, X.M.; Zhang, W.Z.; Wang, Q.G.; Luo, C.Y. Fabrication of biomass-derived carbon decorated with NiFe2O4 particles for broadband and strong microwave absorption. Powder Technol. 2019, 345, 370–378. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhao, P.F.; Li, P.W.; Li, S.D.; Liao, L.S.; Luo, Y.Y.; Peng, Z.; He, D.N.; Cheng, Y. Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation. Compos. Part B 2019, 167, 477–486. [Google Scholar] [CrossRef]
- Geng, H.R.; Zhang, X.; Xie, W.H.; Zhao, P.F.; Wang, G.Z.; Liao, J.H.; Dong, L.J. Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 33–42. [Google Scholar] [CrossRef]
- Wu, H.J.; Wu, G.L.; Ren, Y.Y.; Yang, L.; Wang, L.D.; Li, X.H. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 2015, 3, 7677–7690. [Google Scholar] [CrossRef]
- Cui, H.P.; Zhao, P.F.; Hu, B.X.; Long, A.C.; He, S.M.; Chen, G.J.; Liao, L.S.; Liao, J.H.; Zhao, Y.F. Sustainable Microwave Absorbing Material based on Macadamia Nutshell Derived Porous Carbon. Nano 2022, 17, 2250010. [Google Scholar] [CrossRef]
Biomass-Derived Microwave Absorber | Loading (wt.%) | Thickness (mm) | RLmin (dB) | EAB (GHz) | References |
---|---|---|---|---|---|
Walnut shell-derived porous carbon | 70 | 2.00 | −42.40 | 1.80 (8.08–9.84) | [20] |
Mango-leaf-derived porous carbon | 20 | 1.75 | −23.60 | 5.17(12.83–18.00) | [21] |
Rice-based porous C/Co | 25 | 1.80 | −40.10 | 2.70 (9.30–12.00) | [24] |
Loofah-sponge-derived carbon/Fe3O4@Fe | 30 | 2.00 | −49.60 | 5.30 (13.00–18.00) | [25] |
Porous carbon fiber/Fe3O4 | 30 | 1.90 | −48.20 | 5.10(12.90–18.00) | [39] |
NiO/porous carbon | 30 | 8.00 | −33.80 | 6.70 (11.30–18.00) | [41] |
Porous carbon @NiFe2O4 | 30 | 2.50 | −50.80 | 4.90 (12.40–17.30) | [42] |
Kapok-fiber-derived porous carbon | 30 | 2.30 | −49.46 | 7.12 (10.64–17.76) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, A.; Zhao, P.; Liao, L.; Wang, R.; Tao, J.; Liao, J.; Liao, X.; Zhao, Y. Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material. Materials 2022, 15, 4845. https://doi.org/10.3390/ma15144845
Long A, Zhao P, Liao L, Wang R, Tao J, Liao J, Liao X, Zhao Y. Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material. Materials. 2022; 15(14):4845. https://doi.org/10.3390/ma15144845
Chicago/Turabian StyleLong, Aichun, Pengfei Zhao, Lusheng Liao, Rui Wang, Jinlong Tao, Jianhe Liao, Xiaoxue Liao, and Yanfang Zhao. 2022. "Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material" Materials 15, no. 14: 4845. https://doi.org/10.3390/ma15144845
APA StyleLong, A., Zhao, P., Liao, L., Wang, R., Tao, J., Liao, J., Liao, X., & Zhao, Y. (2022). Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material. Materials, 15(14), 4845. https://doi.org/10.3390/ma15144845