Size-Controllable Synthesis of Monodisperse Magnetite Microparticles Leading to Magnetically Tunable Colloidal Crystals
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. XRD Measurements of Magnetite Microparticles
3.2. Size Control of Magnetite Microparticles
3.3. Water Dispersibility and Magnetic Properties of Magnetite Microparticles
3.4. Optical Properties of Magnetite Microparticle Suspensions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pieranski, P. Colloidal Crystals. Contemp. Phys. 1983, 24, 25–73. [Google Scholar] [CrossRef]
- Velev, O.D.; Kaler, E.W. Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals. Adv. Mater. 2000, 12, 531–534. [Google Scholar] [CrossRef]
- Stein, A.; Wilson, B.E.; Rudisill, S.G. Design and Functionality of Colloidal-Crystal-Templated Materials—Chemical Applications of Inverse Opals. Chem. Soc. Rev. 2013, 42, 2763–2803. [Google Scholar] [CrossRef] [PubMed]
- Fudouzi, H.; Xia, Y. Colloidal Crystals with Tunable Colors and their Use as Photonic Papers. Langmuir 2003, 19, 9653–9660. [Google Scholar] [CrossRef]
- Furumi, S.; Fudouzi, H.; Sawada, T. Self-Organized Colloidal Crystals for Photonics and Laser Applications. Laser Photonics Rev. 2010, 4, 205–220. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Photonic Crystals: Putting a New Twist on Light. Nature 1997, 386, 143–149. [Google Scholar] [CrossRef]
- Richel, A.; Johnson, N.P.; McComb, D.W. Observation of Bragg Reflection in Photonic Crystals Synthesized from Air Spheres in a Titania Matrix. Appl. Phys. Lett. 2000, 76, 1816–1818. [Google Scholar] [CrossRef]
- Rundquist, P.A.; Photinos, P.; Jagannathan, S.; Asher, S.A. Dynamical Bragg Diffraction from Crystalline Colloidal Arrays. J. Chem. Phys. 1989, 91, 4932–4941. [Google Scholar] [CrossRef]
- Nakayama, D.; Takeoka, Y.; Watanabe, M.; Kataoka, K. Simple and Precise Preparation of a Porous Gel for a Colorimetric Glucose Sensor by a Templating Technique. Angew. Chem. Int. Ed. 2003, 42, 4197–4200. [Google Scholar] [CrossRef]
- Matsubara, K.; Watanabe, M.; Takeoka, Y. A Thermally Adjustable Multicolor Photochromic Hydrogel. Angew. Chem. Int. Ed. 2007, 46, 1688–1692. [Google Scholar] [CrossRef] [PubMed]
- Weissman, J.M.; Sunkara, H.B.; Tse, A.S.; Asher, S.A. Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials. Science 1996, 274, 959–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, N.; Koike, T.; Tokuhiro, K.; Sato, R.; Furumi, S. Colloidal Photonic Crystals of Reusable Hydrogel Microparticles for Sensor and Laser Applications. ACS Appl. Mater. Interfaces 2021, 13, 57893–57907. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Chen, C.; Chen, Q. Magnetically Controllable Colloidal Photonic Crystals: Unique Features and Intriguing Applications. J. Mater. Chem. C 2013, 1, 6013–6030. [Google Scholar] [CrossRef]
- Malik, V.; Petukhov, A.V.; He, L.; Yin, Y.; Schmidt, M. Colloidal Crystallization and Structural Changes in Suspensions of Silica/Magnetite Core–Shell Nanoparticles. Langmuir 2012, 28, 14777–14783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, A.; Malik, V.; He, L.; Erné, B.H.; Yin, Y.; Kegel, W.K.; Petukhov, A.V. Tuning the Colloidal Crystal Structure of Magnetic Particles by External Field. Angew. Chem. Int. Ed. 2015, 54, 1803–1807. [Google Scholar] [CrossRef]
- Ge, J.; Hu, Y.; Yin, Y. Highly Tunable Superparamagnetic Colloidal Photonic Crystals. Angew. Chem. Int. Ed. 2007, 46, 7428–7431. [Google Scholar] [CrossRef]
- Chi, J.; Shao, C.; Zhang, Y.; Ni, D.; Kong, T.; Zhao, Y. Magnetically Responsive Colloidal Crystals with Angle-Independent Gradient Structural Colors in Microfluidic Droplet Arrays. Nanoscale 2019, 11, 12898–12904. [Google Scholar] [CrossRef]
- Xu, X.; Friedman, G.; Humfeld, K.D.; Majetich, S.A.; Asher, S.A. Synthesis and Utilization of Monodisperse Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals. Chem. Mater. 2002, 14, 1249–1256. [Google Scholar] [CrossRef]
- Liu, C.; Li, J. Study of Monodispersed Polystyrene Colloidal Particles Containing Fluorine. J. Appl. Polym. Sci. 2008, 109, 1604–1610. [Google Scholar] [CrossRef]
- Seki, Y.; Shibata, Y.; Furumi, S. Synthesis of Monodispersed Silica Microparticles in a Microreactor for Well-Organized Colloidal Photonic Crystals. J. Photopolym. Sci. Technol. 2020, 33, 473–477. [Google Scholar] [CrossRef]
- Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W.P.; Yin, Y. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. Angew. Chem. Int. Ed. 2007, 46, 4342–4345. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Gong, J.; Zhang, L.; Yu, J.C. Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave-polyol Process and their Application for Humidity Sensing. Adv. Mater. 2008, 20, 4845–4850. [Google Scholar] [CrossRef]
- Gao, J.; Ran, X.; Shi, C.; Cheng, H.; Cheng, T.; Su, Y. One-Step Solvothermal Synthesis of Highly Water-Soluble, Negatively Charged Superparamagnetic Fe3O4 Colloidal Nanocrystal Clusters. Nanoscale 2013, 5, 7026–7033. [Google Scholar] [CrossRef]
- Yamamoto, E.; Kitahara, M.; Tsumura, T.; Kuroda, K. Preparation of Size-Controlled Monodisperse Colloidal Mesoporous Silica Nanoparticles and Fabrication of Colloidal Crystals. Chem. Mater. 2014, 26, 2927–2933. [Google Scholar] [CrossRef]
- Lu, X.; Chen, C.; Wen, X.; Han, P.; Jiang, W.; Liang, G. Highly Charged, Magnetically Sensitive Magnetite/Polystyrene Colloids: Synthesis and Tunable Optical Properties. J. Mater. Sci. 2019, 54, 7628–7636. [Google Scholar] [CrossRef]
- Okamoto, J.; Tsuchida, A.; Okubo, T. Colloidal Crystals Formed by Aqueous Suspensions of Monodispersed Silica, Polystyrene, and Poly(methyl methacrylate) Colloidal Spheres. Colloid Polym. Sci. 2011, 289, 1653–1660. [Google Scholar] [CrossRef]
Sample | Amount of NaOH (g) | NaOH Concentration (M) | Reaction Temperature (°C) | Diameter (nm) 1 | CV (%) 1 | D2 (nm) | Ms 3 (emu/g) |
---|---|---|---|---|---|---|---|
M-1 | 0.36 | 0.28 | 190 | 106 | 10.8 | 7.3 | 58.1 |
M-2 | 0.40 | 0.31 | 190 | 111 | 10.4 | 24 | 60.5 |
M-3 | 0.44 | 0.34 | 190 | 150 | 6.4 | 37 | 63.0 |
M-4 | 0.48 | 0.38 | 190 | 200 | 7.0 | 44 | 82.3 |
M-5 | 0.48 | 0.38 | 210 | 226 | 25.8 | – 4 | – 4 |
M-6 | 0.48 | 0.38 | 230 | 226 | 18.6 | – 4 | – 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seki, T.; Seki, Y.; Iwata, N.; Furumi, S. Size-Controllable Synthesis of Monodisperse Magnetite Microparticles Leading to Magnetically Tunable Colloidal Crystals. Materials 2022, 15, 4943. https://doi.org/10.3390/ma15144943
Seki T, Seki Y, Iwata N, Furumi S. Size-Controllable Synthesis of Monodisperse Magnetite Microparticles Leading to Magnetically Tunable Colloidal Crystals. Materials. 2022; 15(14):4943. https://doi.org/10.3390/ma15144943
Chicago/Turabian StyleSeki, Toya, Yutaro Seki, Naoto Iwata, and Seiichi Furumi. 2022. "Size-Controllable Synthesis of Monodisperse Magnetite Microparticles Leading to Magnetically Tunable Colloidal Crystals" Materials 15, no. 14: 4943. https://doi.org/10.3390/ma15144943
APA StyleSeki, T., Seki, Y., Iwata, N., & Furumi, S. (2022). Size-Controllable Synthesis of Monodisperse Magnetite Microparticles Leading to Magnetically Tunable Colloidal Crystals. Materials, 15(14), 4943. https://doi.org/10.3390/ma15144943