Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of RAM
2.2.2. Performance Evaluation of Recycled Asphalt Mixtures
2.2.3. Radar Chart Evaluation Method
3. Results and Discussion
3.1. Volume Performance
3.2. Moisture Susceptibility
3.2.1. Residual Marshall Stability
3.2.2. Tensile Strength Ratio
3.2.3. Cantabro Spatter Loss
3.3. High Temperature Stability Performance
3.4. Low Temperature Performance
3.5. Skid Resistance
3.6. Durability
3.6.1. Fatigue Resistance
3.6.2. Hamburg Wheel Tracking Test
3.7. Comparison Analysis Based on Radar Chart Evaluation Method
4. Conclusions
- The incorporation of steel slag elevates the residual Marshall stability (RMS), tensile strength ratio (TSR) and diminishes the Cantabro spatter loss of RAM, endowing its superior moisture susceptibility than basalt RAM. Steel slag RAM involving 50% RAP dosage demonstrates a RMS of 90.5%, TSR of 89.3% and spatter loss of 5.5%, which remains at a high level;
- Steel slag RAM reveals larger dynamic stability and tensile strain in comparison to basalt RAM, representing its better rutting resistance and low temperature cracking resistance. The texture depth and BPN of steel slag RAM are 0.81 mm and 63, which are higher than those of basalt RAM by 0.08 mm and 11, respectively;
- RAM with steel slag embodies the larger K value and higher fatigue life, representing its superior fatigue performance compared with basalt RAM. All steel slag RAM do not reach the stripping process and stripping inflection point, which exhibit the lower rutting depth and creep slope than basalt RAM, resulting in preferable durability under high temperature and water condition;
- An improved radar chart evaluation method is capable of quantitatively assessing the discrepancies in the improvement effect of steel slag for RAM. Steel slag virgin asphalt mixture possesses the largest comprehensive evaluation function (f) of 0.9710, and the ascending RAP content diminishes the f value of steel slag RAM. Steel slag RAM displays larger f value compared with basalt RAM under the same RAP dosage, indicating its more desirable comprehensive road performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Xie, J.; Wu, S.; Li, J.; Barbieri, D.M.; Zhang, L. Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies. Renew. Sustain. Energ. Rev. 2021, 141, 110823. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Q.; Wang, F.; Cui, P.; Xie, J.; Li, J.; Wu, S.; Barbieri, D.M. Comparative Assessment of Asphalt Volatile Organic Compounds Emission from field to laboratory. J. Clean. Prod. 2021, 278, 123479. [Google Scholar] [CrossRef]
- Wan, P.; Liu, Q.; Wu, S.; Zhao, Z.; Chen, S.; Zou, Y.; Rao, W.; Yu, X. A novel microwave induced oil release pattern of calcium alginate/ nano-Fe3O4 composite capsules for asphalt self-healing. J. Clean. Prod. 2021, 297, 126721. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Statistical Bulletin of Transport Industry Development in 2020; Ministry of Transport of the People’s Republic of China: Beijing, China, 2021.
- Wei, M.; Wu, S.; Zhu, L.; Li, N.; Yang, C. Environmental Impact on VOCs Emission of a Recycled Asphalt Mixture with a High Percentage of RAP. Materials 2021, 14, 947. [Google Scholar] [CrossRef]
- Moins, B.; Hernando, D.; Buyle, M.; France, C.; Van den bergh, W.; Audenaert, A. On the road again! An economic and environmental break-even and hotspot analysis of reclaimed asphalt pavement and rejuvenators. Resour. Conserv. Recy 2022, 177, 106014. [Google Scholar] [CrossRef]
- Salehi, S.; Arashpour, M.; Kodikara, J.; Guppy, R. Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials. J. Clean. Prod. 2021, 313, 127936. [Google Scholar] [CrossRef]
- Montañez, J.; Caro, S.; Carrizosa, D.; Calvo, A.; Sánchez, X. Variability of the mechanical properties of Reclaimed Asphalt Pavement (RAP) obtained from different sources. Constr. Build. Mater. 2020, 230, 116968. [Google Scholar] [CrossRef]
- Ma, Y.; Polaczyk, P.; Park, H.; Jiang, X.; Hu, W.; Huang, B. Performance evaluation of temperature effect on hot in-place recycling asphalt mixtures. J. Clean. Prod. 2020, 277, 124093. [Google Scholar] [CrossRef]
- Xie, Z.; Rizvi, H.; Purdy, C.; Ali, A.; Mehta, Y. Effect of rejuvenator types and mixing procedures on volumetric properties of asphalt mixtures with 50% RAP. Constr. Build. Mater. 2019, 218, 457–464. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xiang, Q.; Qin, W.; Yi, J. Research on the influence of RAP and aged asphalt on the performance of plant-mixed hot recycled asphalt mixture and blended asphalt. Case Stud. Constr. Mater. 2021, 15, e00722. [Google Scholar] [CrossRef]
- Yin, P.; Pan, B. Effect of RAP content on fatigue performance of hot-mixed recycled asphalt mixture. Constr. Build. Mater. 2022, 328, 127077. [Google Scholar] [CrossRef]
- Babagoli, R.; Norouzi, N.; Ameli, A. Laboratory investigation of the influence of aging and compaction effort on low temperature performance of asphalt mixture containing different percentage of RAP. Constr. Build. Mater. 2021, 298, 123899. [Google Scholar] [CrossRef]
- Antunes, V.; Freire, A.C.; Neves, J. Investigating aged binder mobilization and performance of RAP mixtures for surface courses. Constr. Build. Mater. 2021, 271, 121511. [Google Scholar] [CrossRef]
- Roja, K.L.; Masad, E.; Mogawer, W. Performance and blending evaluation of asphalt mixtures containing reclaimed asphalt pavement. Road Mater. Pavement 2022, 22, 2441–2457. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Chen, T.; Zhang, W.; Yao, K.; Fan, C.; Liang, M.; Guo, C.; Yao, Z. Evaluation on the mechanical performance of recycled asphalt mixtures incorporated with high percentage of RAP and self-developed rejuvenators. Constr. Build. Mater. 2021, 269, 121337. [Google Scholar] [CrossRef]
- Guduru, G.; Kuna, K.K. Classification of Reclaimed Asphalt Pavement (RAP) material using simple indicative tests. Constr. Build. Mater. 2022, 328, 127075. [Google Scholar] [CrossRef]
- Chen, A.; Qiu, Y.; Wang, X.; Li, Y.; Wu, S.; Liu, Q.; Wu, F.; Feng, J.; Lin, Z. Mechanism and Performance of Bituminous Mixture Using 100% Content RAP with Bio-Rejuvenated Additive (BRA). Materials 2022, 15, 723. [Google Scholar] [CrossRef]
- Zaumanis, M.; Arraigada, M.; Poulikakos, L.D. 100% recycled high-modulus asphalt concrete mixture design and validation using vehicle simulator. Constr. Build. Mater. 2020, 260, 119891. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.; Amirkhanian, S.N.; Xu, O. Dynamic and rutting characteristics of recycled asphalt mixtures containing natural sand and anti-stripping agents. J. Clean. Prod. 2021, 280, 124365. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, Y.; Du, C.; Wang, W.; Liu, J.; Chen, J. Rutting and fatigue performance evaluation of warm mix asphalt mastic containing high percentage of artificial RAP binder. Constr. Build. Mater. 2020, 240, 117860. [Google Scholar] [CrossRef]
- Kong, L.; Lu, Z.; He, Z.; Shen, Z.; Xu, H.; Yang, K.; Yu, L. Characterization of crack resistance mechanism of fiber modified emulsified asphalt cold recycling mixture based on acoustic emission parameters. Constr. Build. Mater. 2022, 327, 126939. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S. Experiments and numerical analysis of cold-recycled asphalt mixture modified with desulfurization gypsum additive. Constr. Build. Mater. 2022, 326, 126803. [Google Scholar] [CrossRef]
- Yang, W.; Ouyang, J.; Meng, Y.; Han, B.; Sha, Y. Effect of curing and compaction on volumetric and mechanical properties of cold-recycled mixture with asphalt emulsion under different cement contents. Constr. Build. Mater. 2021, 297, 123699. [Google Scholar] [CrossRef]
- Li, J.; Yu, J.; Wu, S.; Xie, J. The Mechanical Resistance of Asphalt Mixture with Steel Slag to Deformation and Skid Degradation Based on Laboratory Accelerated Heavy Loading Test. Materials 2022, 15, 911. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Wu, S.; Xiao, Y.; Hu, R.; Yang, T. Environmental performance and functional analysis of chip seals with recycled basic oxygen furnace slag as aggregate. J. Hazard. Mater. 2021, 405, 124441. [Google Scholar] [CrossRef]
- Song, Q.; Guo, M.-Z.; Wang, L.; Ling, T.-C. Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resour. Conserv. Recy 2021, 173, 105740. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, I.; Lastra-González, P.; Indacoechea-Vega, I.; Castro-Fresno, D. Recyclability potential of asphalt mixes containing reclaimed asphalt pavement and industrial by-products. Constr. Build. Mater. 2019, 195, 148–155. [Google Scholar] [CrossRef]
- Pasetto, M.; Baldo, N. Dissipated energy analysis of four-point bending test on asphalt concretes made with steel slag and RAP. Int. J. Pavement Res. Technol. 2017, 10, 446–453. [Google Scholar] [CrossRef]
- Fakhri, M.; Ahmadi, A. Recycling of RAP and steel slag aggregates into the warm mix asphalt: A performance evaluation. Constr. Build. Mater. 2017, 147, 630–638. [Google Scholar] [CrossRef]
- Yang, C.; Wu, S.; Cui, P.; Amirkhanian, S.; Zhao, Z.; Wang, F.; Zhang, L.; Wei, M.; Zhou, X.; Xie, J. Performance characterization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag. J. Clean. Prod. 2022, 336, 130484. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Yang, C.; Wang, F. Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing. Constr. Build. Mater. 2020, 239, 117870. [Google Scholar] [CrossRef]
- Cao, Z.; Huang, X.; Yu, J.; Han, X.; Wang, R.; Li, Y. Study on all-components regeneration of ultraviolet aged SBS modified asphalt for high-performance recycling. J. Clean. Prod. 2020, 276, 123376. [Google Scholar] [CrossRef]
- Yang, C.; Xie, J.; Wu, S.; Amirkhanian, S.; Wang, Z.; Song, J.; Zhou, X.; Wang, F.; Zhang, L. Enhancement mechanism of induction heating on blending efficiency of RAP—Virgin asphalt in steel slag recycled asphalt mixtures. Constr. Build. Mater. 2021, 269, 121318. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Yang, F.; Cheng, M.; Wang, Y.; Amirkhanian, S.; Wu, S.; Wei, M.; Xie, J. Multi-scale performance evaluation and correlation analysis of blended asphalt and recycled asphalt mixtures incorporating high RAP content. J. Clean. Prod. 2021, 317, 128278. [Google Scholar] [CrossRef]
- Song, J.; Xie, J.; Wu, S.; Yang, C.; Wang, Z.; Chen, H.; Shi, Y. Study on properties and improving mechanism of OGFC-13 asphalt mixtures modified by novel rubber pellets. Constr. Build. Mater. 2022, 325, 126799. [Google Scholar] [CrossRef]
- Dong, S.; Wang, D.; Hao, P.; Zhang, Q.; Bi, J.; Chen, W. Quantitative assessment and mechanism analysis of modification approaches for cold recycled mixtures with asphalt emulsion. J. Clean. Prod. 2021, 323, 129163. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Technical Specifications for Construction of Highway Asphalt Pavements; JTG F40–2004; China Communications Press: Beijing, China, 2004.
- Oldham, D.; Rajib, A.; Dandamudi, K.P.R.; Liu, Y.; Deng, S.; Fini, E.H. Transesterification of Waste Cooking Oil to Produce A Sustainable Rejuvenator for Aged Asphalt. Resour. Conserv. Recycl. 2021, 168, 105297. [Google Scholar] [CrossRef]
- Ma, Y.; Polaczyk, P.; Hu, W.; Zhang, M.; Huang, B. Quantifying the effective mobilized RAP content during hot in-place recycling techniques. J. Clean. Prod. 2021, 314, 127953. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, G.; Tighe, S.; Chen, M.; Wu, S.; Adhikari, S.; Gao, Y. Quantitative comparison of surface and interface adhesive properties of fine aggregate asphalt mixtures composed of basalt, steel slag, and andesite. Constr. Build. Mater. 2020, 246, 118507. [Google Scholar] [CrossRef]
- Erdem, S.; Blankson, M.A. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate. J. Hazard. Mater. 2014, 264, 403–410. [Google Scholar] [CrossRef]
- Ai, X.; Cao, J.; Feng, D.; Gao, L.; Hu, W.; Yi, J. Performance evaluation of recycled asphalt mixtures with various percentages of RAP from the rotary decomposition process. Constr. Build. Mater. 2022, 321, 126406. [Google Scholar] [CrossRef]
Types | Steel Slag | Basalt | ||
---|---|---|---|---|
Indexes | ||||
Apparent specific gravity | Particle sizes (mm) | 9.5–16 | 3.369 | 2.983 |
4.75–9.5 | 3.327 | 2.974 | ||
2.36–4.75 | 3.138 | 2.972 | ||
Water absorption (%) | Particle sizes (mm) | 9.5–16 | 1.59 | 0.58 |
4.75–9.5 | 2.38 | 0.73 | ||
2.36–4.75 | 2.82 | 1.04 | ||
Los Angeles abrasion (%) | 13.9 | 20.7 | ||
Crushed value (%) | 16.8 | 17.2 | ||
Polished value (%) | 52 | 46 | ||
Adhesion level | 5 | 4 | ||
Free-CaO content (%) | 2.135 | - |
Mixtures Styles | RAP Content (%) | Asphalt-Aggregate Ratio (%) | Bulk Density (g/cm3) | Air Voids (%) | VMA (%) | VFA (%) |
---|---|---|---|---|---|---|
Steel slag | 0 | 4.9 | 2.653 | 4.2 | 14.1 | 70.3 |
10 | 4.9 | 2.645 | 4.3 | 14.2 | 69.6 | |
20 | 4.9 | 2.637 | 4.5 | 14.1 | 68.2 | |
30 | 5.0 | 2.634 | 3.8 | 14.1 | 73.0 | |
40 | 5.0 | 2.624 | 4.0 | 14.2 | 72.0 | |
50 | 5.1 | 2.621 | 3.9 | 14.2 | 72.3 | |
Basalt | 0 | 4.7 | 2.520 | 3.9 | 14.0 | 72.2 |
10 | 4.7 | 2.524 | 4.0 | 14.3 | 71.8 | |
20 | 4.8 | 2.528 | 3.8 | 14.0 | 72.6 | |
30 | 4.8 | 2.523 | 4.1 | 14.2 | 70.8 | |
40 | 4.8 | 2.527 | 4.0 | 14.3 | 72.3 | |
50 | 4.9 | 2.531 | 3.9 | 14.1 | 72.5 |
Mixtures Styles | RAP Content (%) | Maximum Load (N) | Tensile Strength (MPa) | Tensile Strain (με) | Stiffness Modulus (MPa) |
---|---|---|---|---|---|
Steel slag | 0 | 1252.6 | 10.225 | 3269.2 | 3127.8 |
10 | 1238.6 | 10.111 | 3102.2 | 3259.3 | |
20 | 1211.6 | 9.891 | 2955.8 | 3346.2 | |
30 | 1185.4 | 9.677 | 2813.5 | 3439.4 | |
40 | 1153.5 | 9.416 | 2695.9 | 3492.9 | |
50 | 1122.3 | 9.162 | 2548.4 | 3595.1 | |
Basalt | 0 | 1033.5 | 8.437 | 3006.7 | 2806.0 |
10 | 1010.2 | 8.247 | 2892.2 | 2851.3 | |
20 | 975.3 | 7.962 | 2745.8 | 2899.6 | |
30 | 955.7 | 7.802 | 2603.5 | 2996.6 | |
40 | 906.5 | 7.400 | 2510.0 | 2948.2 | |
50 | 875.1 | 7.144 | 2323.1 | 3075.0 |
Mixtures Styles | RAP Content (%) | Fitting Formula (Nf = K (σ)−n) | R2 | |||
---|---|---|---|---|---|---|
K | n | |||||
Value | Standard Deviation | Value | Standard Deviation | |||
Steel Slag | 0 | 16,506.4 | 234.4 | −0.251 | 0.016 | 0.9877 |
10 | 15,716.9 | 198.5 | −0.274 | 0.014 | 0.9919 | |
20 | 14,190.3 | 105.4 | −0.362 | 0.008 | 0.9984 | |
30 | 11,486.9 | 344.0 | −0.546 | 0.034 | 0.9888 | |
40 | 9495.0 | 111.5 | −0.707 | 0.013 | 0.9990 | |
50 | 8346.9 | 204.7 | −0.797 | 0.027 | 0.9965 | |
Basalt | 0 | 12,229.8 | 218.0 | −0.502 | 0.020 | 0.9953 |
10 | 11,233.9 | 500.1 | −0.555 | 0.049 | 0.9764 | |
20 | 10,039.6 | 358.2 | −0.646 | 0.039 | 0.9888 | |
30 | 9472.0 | 595.9 | −0.669 | 0.070 | 0.9680 | |
40 | 8427.0 | 125.2 | −0.712 | 0.017 | 0.9984 | |
50 | 6940.3 | 275.3 | −0.858 | 0.044 | 0.9922 |
Mixtures Styles | RAP Content (%) | Rutting Depth (mm) | Creep Slope (×10−4) | Stripping Slope (×10−4) | Stripping Inflection Point (SIP) |
---|---|---|---|---|---|
Steel slag | 0 | −8.61 | −3.06 | / | / |
10 | −7.98 | −1.98 | / | / | |
20 | −7.51 | −1.91 | / | / | |
30 | −6.87 | −1.45 | / | / | |
40 | −7.40 | −1.69 | / | / | |
50 | −7.60 | −2.54 | / | / | |
Basalt | 0 | −11.69 | −4.66 | / | / |
10 | −10.65 | −3.81 | / | / | |
20 | −9.58 | −3.39 | / | / | |
30 | −8.49 | −2.54 | / | / | |
40 | −9.15 | −3.26 | −5.30 | X = 15,589, Y = −7.19 | |
50 | −10.46 | −3.97 | −7.76 | X = 17,065, Y = −8.08 |
Mixtures Styles | RAP Content (%) | Water Stability | Rutting Resistance | Crack Resistance | Skid Resistance | Durability | ||||
---|---|---|---|---|---|---|---|---|---|---|
RMS (%) | TSR (%) | SL (%) | DS (Times/mm) | TS (με) | TD (mm) | BPN | Intercept K | CS (×10−4) | ||
Steel slag | 0 | 95.9 | 95.2 | 3.6 | 3962 | 3269.2 | 0.95 | 77 | 16,506.4 | 3.06 |
10 | 94.8 | 94.3 | 4.2 | 4038 | 3102.2 | 0.94 | 75 | 15,716.9 | 1.98 | |
20 | 94.4 | 92.2 | 4.5 | 4257 | 2955.8 | 0.90 | 73 | 14,190.3 | 1.91 | |
30 | 93.0 | 91.5 | 4.9 | 4599 | 2813.5 | 0.86 | 69 | 11,486.9 | 1.45 | |
40 | 91.3 | 91.0 | 5.3 | 4846 | 2695.9 | 0.83 | 65 | 9,495.0 | 1.69 | |
50 | 90.5 | 89.3 | 5.5 | 5040 | 2548.4 | 0.81 | 63 | 8,346.9 | 2.54 | |
Basalt | 0 | 93.6 | 93.8 | 4.2 | 3198 | 3006.7 | 0.86 | 65 | 12,229.8 | 4.66 |
10 | 93.1 | 92.6 | 4.5 | 3387 | 2892.2 | 0.83 | 62 | 11,233.9 | 3.81 | |
20 | 92.5 | 90.7 | 4.8 | 3865 | 2745.8 | 0.81 | 59 | 10,039.6 | 3.39 | |
30 | 90.7 | 87.9 | 5.4 | 4118 | 2603.5 | 0.78 | 57 | 9472.0 | 2.54 | |
40 | 89.4 | 84.2 | 5.8 | 4315 | 2510.0 | 0.75 | 55 | 8427.0 | 3.26 | |
50 | 88.5 | 81.0 | 6.2 | 4773 | 2323.1 | 0.73 | 52 | 6940.3 | 3.97 |
Mixtures Styles | RAP Content (%) | Water Stability | Rutting Resistance | Crack Resistance | Skid Resistance | Durability | ||||
---|---|---|---|---|---|---|---|---|---|---|
RMS | TSR | SL | DS | TS | TD | BPN | Intercept K | CS | ||
Steel slag | 0 | 1.6550 | 1.5622 | 0.3213 | 0.7357 | 1.6839 | 1.6624 | 1.6544 | 1.6843 | 1.1337 |
10 | 1.5449 | 1.4979 | 0.5064 | 0.8145 | 1.5587 | 1.6359 | 1.6043 | 1.6399 | 0.5300 | |
20 | 1.4894 | 1.2801 | 0.6726 | 1.0672 | 1.3631 | 1.4828 | 1.5400 | 1.5142 | 0.5055 | |
30 | 1.1971 | 1.1836 | 0.9927 | 1.4055 | 1.0601 | 1.2093 | 1.3490 | 1.0688 | 0.3821 | |
40 | 0.7223 | 1.1085 | 1.3161 | 1.5571 | 0.7816 | 0.9279 | 1.0554 | 0.6645 | 0.4393 | |
50 | 0.5567 | 0.8435 | 1.4367 | 1.6366 | 0.5252 | 0.7486 | 0.8900 | 0.5064 | 0.7985 | |
Basalt | 0 | 1.3427 | 1.4555 | 0.5064 | 0.3145 | 1.4437 | 1.2093 | 1.0554 | 1.2234 | 1.6884 |
10 | 1.2234 | 1.3300 | 0.6726 | 0.3731 | 1.2406 | 0.9279 | 0.8113 | 1.0133 | 1.4978 | |
20 | 1.0563 | 1.0619 | 0.9053 | 0.6464 | 0.8956 | 0.7486 | 0.6121 | 0.7615 | 1.3232 | |
30 | 0.5929 | 0.6562 | 1.3803 | 0.9042 | 0.6060 | 0.5436 | 0.5131 | 0.6607 | 0.7985 | |
40 | 0.4071 | 0.3704 | 1.5663 | 1.1339 | 0.4781 | 0.4113 | 0.4367 | 0.5156 | 1.2538 | |
50 | 0.3288 | 0.2594 | 1.6752 | 1.5192 | 0.3244 | 0.3504 | 0.3531 | 0.3808 | 1.5470 |
Mixtures Styles | RAP Content (%) | ui = [Ai, Li] | νi = [νi1, νi2] |
---|---|---|---|
Steel slag | 0 | [6.3817, 8.4425] | [1.0000, 0.9427] |
10 | [5.6549, 7.9116] | [0.8861, 0.9385] | |
20 | [5.0353, 7.6201] | [0.7890, 0.9579] | |
30 | [4.0104, 6.8752] | [0.6284, 0.9685] | |
40 | [3.1861, 5.9849] | [0.4993, 0.9458] | |
50 | [2.8924, 5.5446] | [0.4532, 0.9197] | |
Basalt | 0 | [4.6372, 7.1484] | [0.7266, 0.9364] |
10 | [3.5555, 6.3461] | [0.5571, 0.9494] | |
20 | [2.6350, 5.5926] | [0.4129, 0.9719] | |
30 | [1.9216, 4.6464] | [0.3011, 0.9455] | |
40 | [2.2578, 4.5889] | [0.3538, 0.8615] | |
50 | [2.8556, 4.7042] | [0.4475, 0.7853] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, S.; Yang, C.; Xie, J.; Xiao, Y.; Zhao, Z.; Wang, F.; Zhang, L. Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag. Materials 2022, 15, 5005. https://doi.org/10.3390/ma15145005
Wang Z, Wu S, Yang C, Xie J, Xiao Y, Zhao Z, Wang F, Zhang L. Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag. Materials. 2022; 15(14):5005. https://doi.org/10.3390/ma15145005
Chicago/Turabian StyleWang, Zipeng, Shaopeng Wu, Chao Yang, Jun Xie, Yongli Xiao, Zenggang Zhao, Fusong Wang, and Lei Zhang. 2022. "Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag" Materials 15, no. 14: 5005. https://doi.org/10.3390/ma15145005
APA StyleWang, Z., Wu, S., Yang, C., Xie, J., Xiao, Y., Zhao, Z., Wang, F., & Zhang, L. (2022). Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag. Materials, 15(14), 5005. https://doi.org/10.3390/ma15145005