Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Load Levels Definition
3.2. Micro-Compression Tests
3.3. 2D Cross-Sections of Boen Surrogates
3.4. 2D Cross-Sections of Biological Samples
4. Discussion
5. Conclusions
- The automization of data analysis by developing technical and scientific protocols.
- The creation of a larger data pool of different bone surrogates and different animal bones to enable the selection of the best suitable material for orthopaedic and trauma training and specific research questions.
- Future experiments should be evaluated automatically, and several smaller load levels should also be tested.
- Incorporating digital volume correlation, in situ X-ray computed tomography, and 4D computed tomography.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levchuk, A.; Schneider, P.; Meier, M.; Vogel, P.; Donaldson, F.; Müller, R. An Automated Step-Wise Micro-Compression Device for 3D Dynamic Image-Guided Failure Assessment of Bone Tissue on a Microstructural Level Using Time-Lapsed Tomography. Front. Mater. 2018, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Goulet, R.W.; Goldstein, S.A.; Ciarelli, M.J.; Kuhn, J.L.; Brown, M.B.; Feldkamp, L.A. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 1994, 27, 375–389. [Google Scholar] [CrossRef] [Green Version]
- Rho, J.-Y.; Kuhn-Spearing, L.; Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92–102. [Google Scholar] [CrossRef]
- Turner, C.H.; Hsieh, Y.-F.; Müller, R.; Bouxsein, M.L.; Baylink, D.J.; Rosen, C.J.; Grynpas, M.D.; Donahue, L.R.; Beamer, W.G. Genetic Regulation of Cortical and Trabecular Bone Strength and Microstructure in Inbred Strains of Mice. J. Bone Miner. Res. 2000, 15, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Currey, J.D. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 1988, 21, 131–139. [Google Scholar] [CrossRef]
- Wehrli, F.W. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J. Magn. Reson. Imaging 2007, 25, 390–409. [Google Scholar] [CrossRef]
- Reilly, D.T.; Burstein, A.H. The elastic and ultimate properties of compact bone tissue. J. Biomech. 1975, 8, 393–405. [Google Scholar] [CrossRef]
- McCalden, R.W.; McGeough, J.A.; Barker, M.B.; Court-Brown, C.M. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. JBJS 1993, 75, 1193–1205. [Google Scholar] [CrossRef]
- Donahue, S.W.; Galley, S.A. Microdamage in Bone: Implications for Fracture, Repair, Remodeling, and Adaptation. Crit. Rev. Biomed. Eng. 2006, 34, 215–271. [Google Scholar] [CrossRef]
- Klinck, R.J.; Campbell, G.M.; Boyd, S.K. Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med. Eng. Phys. 2008, 30, 888–895. [Google Scholar] [CrossRef]
- Zhao, S.; Arnold, M.; Ma, S.; Abel, R.L.; Cobb, J.P.; Hansen, U.; Boughton, O. Standardizing compression testing for measuring the stiffness of human bone. Bone Jt. Res. 2018, 7, 524–538. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.; Gheduzzi, S. Basic biomechanics and biomaterials. Surgery 2012, 30, 86–91. [Google Scholar]
- Rubash, H.E.; Sinha, R.K.; Shanbhag, A.S.; Kim, S.Y. Pathogenesis of bone loss after total hip arthroplasty. Orthop. Clin. N. Am. 1998, 29, 173–186. [Google Scholar] [CrossRef]
- Augat, P.; Link, T.; Lang, T.F.; Lin, J.C.; Majumdar, S.; Genant, H.K. Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. Med. Eng. Phys. 1998, 20, 124–131. [Google Scholar] [CrossRef]
- Nazarian, A.; von Stechow, D.; Zurakowski, D.; Muller, R.; Snyder, B.D. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif. Tissue Int. 2008, 83, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Ciarallo, A.; Barralet, J.; Tanzer, M.; Kremer, R. An approach to compare the quality of cancellous bone from the femoral necks of healthy and osteoporotic patients through compression testing and microcomputed tomography imaging. McGill J. Med. 2006, 9, 102–107. [Google Scholar] [CrossRef]
- Voide, R.; Schneider, P.; Stauber, M.; van Lenthe, G.H.; Stampanoni, M.; Müller, R. The importance of murine cortical bone microstructure for microcrack initiation and propagation. Bone 2011, 49, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Guha, I.; Zhang, X.; Rajapakse, C.S.; Letuchy, E.M.; Chang, G.; Janz, K.F.; Torner, J.C.; Levy, S.M.; Saha, P.K. Computed Tomography-Based Stiffness Measures of Trabecular Bone Microstructure: Cadaveric Validation and In Vivo Application. JBMR Plus 2022, 6, e10627. [Google Scholar] [CrossRef]
- Van Ruijven, L.J.; Mulder, L.; van Eijden, T.M. Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone. J. Biomech. 2007, 40, 1211–1218. [Google Scholar] [CrossRef]
- Rajapakse, C.S.; Magland, J.F.; Wald, M.J.; Liu, X.S.; Zhang, X.H.; Guo, X.E.; Wehrli, F.W. Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 2010, 47, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Keyak, J.H.; Sigurdsson, S.; Karlsdottir, G.S.; Oskarsdottir, D.; Sigmarsdottir, A.; Kornak, J.; Harris, T.B.; Sigurdsson, G.; Jonsson, B.Y.; Siggeirsdottir, K.; et al. Effect of finite element model loading condition on fracture risk assessment in men and women: The AGES-Reykjavik study. Bone 2013, 57, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, C.J.; Lambers, F.M.; Widjaja, J.; Chapa, C.; Rimnac, C.M. Quantitative relationships between microdamage and cancellous bone strength and stiffness. Bone 2014, 66, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burr, D.B.; Martin, R.B.; Schaffler, M.B.; Radin, E.L. Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 1985, 18, 189–200. [Google Scholar] [CrossRef]
- Burr, D.B.; Turner, C.H.; Naick, P.; Forwood, M.R.; Ambrosius, W.; Sayeed Hasan, M.; Pidaparti, R. Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 1998, 31, 337–345. [Google Scholar] [CrossRef]
- Choi, K.; Goldstein, S.A. A comparison of the fatigue behavior of human trabecular and cortical bone tissue. J. Biomech. 1992, 25, 1371–1381. [Google Scholar] [CrossRef] [Green Version]
- Diab, T.; Vashishth, D. Effects of damage morphology on cortical bone fragility. Bone 2005, 37, 96–102. [Google Scholar] [CrossRef]
- Fazzalari, N.L.; Forwood, M.R.; Manthey, B.A.; Smith, K.; Kolesik, P. Three-dimensional confocal images of microdamage in cancellous bone. Bone 1998, 23, 373–378. [Google Scholar] [CrossRef]
- Reilly, G.C. Observations of microdamage around osteocyte lacunae in bone. J. Biomech. 2000, 33, 1131–1134. [Google Scholar] [CrossRef]
- Nalla, R.K.; Kruzic, J.J.; Kinney, J.H.; Ritchie, R.O. Effect of aging on the toughness of human cortical bone: Evaluation by R-curves. Bone 2004, 35, 1240–1246. [Google Scholar] [CrossRef]
- Voide, R.; van Lenthe, G.H.; Müller, R. Bone Morphometry Strongly Predicts Cortical Bone Stiffness and Strength, but Not Toughness, in Inbred Mouse Models of High and Low Bone Mass. J. Bone Miner. Res. 2008, 23, 1194–1203. [Google Scholar] [CrossRef]
- Larrue, A.; Rattner, A.; Peter, Z.-A.; Olivier, C.; Laroche, N.; Vico, L.; Peyrin, F. Synchrotron Radiation Micro-CT at the Micrometer Scale for the Analysis of the Three-Dimensional Morphology of Microcracks in Human Trabecular Bone. PLoS ONE 2011, 6, e21297. [Google Scholar] [CrossRef] [Green Version]
- Palanca, M.; Bodey, A.J.; Giorgi, M.; Viceconti, M.; Lacroix, D.; Cristofolini, L.; Dall’Ara, E. Local displacement and strain uncertainties in different bone types by digital volume correlation of synchrotron microtomograms. J. Biomech. 2017, 58, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.P.; Lappe, J.M.; Davies, K.M.; Recker, R.R. Transmenopausal changes in the trabecular bone structure. Bone 2007, 41, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Dubrow, S.A.; Hruby, P.M.; Akhter, M.P. Gender specific LRP5 influences on trabecular bone structure and strength. J. Musculoskelet. Neuronal Interact. 2007, 7, 166–173. [Google Scholar] [PubMed]
- Akhter, M.P.; Recker, R.R. High resolution imaging in bone tissue research-review. Bone 2021, 143, 115620. [Google Scholar] [CrossRef]
- Ma, S.; Boughton, O.; Karunaratne, A.; Jin, A.; Cobb, J.; Hansen, U.; Abel, R. Synchrotron Imaging Assessment of Bone Quality. Clin. Rev. Bone Miner Metab. 2016, 14, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Nazarian, A.; Müller, R. Time-lapsed microstructural imaging of bone failure behavior. J. Biomech. 2004, 37, 55–65. [Google Scholar] [CrossRef]
- Jang, A.T.; Lin, J.D.; Seo, Y.; Etchin, S.; Merkle, A.; Fahey, K.; Ho, S.P. In situ Compressive Loading and Correlative Noninvasive Imaging of the Bone-periodontal Ligament-tooth Fibrous Joint. JoVE 2014, 85, e51147. [Google Scholar] [CrossRef] [Green Version]
- Evans, N.T.; Torstrick, F.B.; Safranski, D.L.; Guldberg, R.E.; Gall, K. Local deformation behavior of surface porous polyether-ether-ketone. J. Mech. Behav. Biomed. Mater. 2017, 65, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Voide, R.; Schneider, P.; Stauber, M.; Wyss, P.; Stampanoni, M.; Sennhauser, U.; van Lenthe, G.H.; Müller, R. Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution. Bone 2009, 45, 164–173. [Google Scholar] [CrossRef]
- Bleuet, P.; Roux, J.-P.; Dabin, Y.; Boivin, G. Situ Microtomography Study of Human Bones under Strain with Synchrotron Radiation; SPIE: New York, NY, USA, 2004; Volume 5535. [Google Scholar]
- Thurner, P.J.; Wyss, P.; Voide, R.; Stauber, M.; Stampanoni, M.; Sennhauser, U.; Müller, R. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone 2006, 39, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Manske, S.L.; Zhu, Y.; Sandino, C.; Boyd, S.K. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 2015, 79, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [Google Scholar] [CrossRef] [Green Version]
- Müller, R. Hierarchical microimaging of bone structure and function. Nat. Rev. Rheumatol. 2009, 5, 373–381. [Google Scholar] [CrossRef]
- Muller, R.; Gerber, S.C.; Hayes, W.C. Micro-compression: A novel technique for the nondestructive assessment of local bone failure. Technol. Health Care 1998, 6, 433–444. [Google Scholar] [CrossRef]
- Cheung, A.M.; Adachi, J.D.; Hanley, D.A.; Kendler, D.L.; Davison, K.S.; Josse, R.; Brown, J.P.; Ste-Marie, L.G.; Kremer, R.; Erlandson, M.C.; et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: A review by the Canadian Bone Strength Working Group. Curr. Osteoporos. Rep. 2013, 11, 136–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutroy, S.; Khosla, S.; Sornay-Rendu, E.; Zanchetta, M.B.; McMahon, D.J.; Zhang, C.A.; Chapurlat, R.D.; Zanchetta, J.; Stein, E.M.; Bogado, C.; et al. Microarchitecture and Peripheral BMD are Impaired in Postmenopausal White Women With Fracture Independently of Total Hip T-Score: An International Multicenter Study. J. Bone Miner. Res. 2016, 31, 1158–1166. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Brooke-Wavell, K.; Paggiosi, M.A.; Hartley, C.; Walsh, J.S.; Silberschmidt, V.V.; Li, S. Characterising variability and regional correlations of microstructure and mechanical competence of human tibial trabecular bone: An in-vivo HR-pQCT study. Bone 2019, 121, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Pan, F.; Wu, F.; Squibb, K.; Thomson, R.; Winzenberg, T.; Jones, G. Familial resemblance in trabecular and cortical volumetric bone mineral density and bone microarchitecture as measured by HRpQCT. Bone 2018, 110, 76–83. [Google Scholar] [CrossRef]
- Rapagna, S.; Berahmani, S.; Wyers, C.E.; van den Bergh, J.P.W.; Reynolds, K.J.; Tozzi, G.; Janssen, D.; Perilli, E. Quantification of human bone microarchitecture damage in press-fit femoral knee implantation using HR-pQCT and digital volume correlation. J. Mech. Behav. Biomed. Mater. 2019, 97, 278–287. [Google Scholar] [CrossRef]
- Michalak, G.J.; Walker, R.; Boyd, S.K. Concurrent Assessment of Cartilage Morphology and Bone Microarchitecture in the Human Knee Using Contrast-Enhanced HR-pQCT Imaging. J. Clin. Densitom. 2019, 22, 74–85. [Google Scholar] [CrossRef]
- Goetzen, M.; Hofmann-Fliri, L.; Arens, D.; Zeiter, S.; Eberli, U.; Richards, G.; Blauth, M. Subchondral screw abutment: Does it harm the joint cartilage? An in vivo study on sheep tibiae. Int. Orthop. 2017, 41, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Salmon, P.L.; Ohlsson, C.; Shefelbine, S.J.; Doube, M. Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone. Front. Endocrinol. 2015, 6, 162. [Google Scholar] [CrossRef] [Green Version]
- Karali, A.; Kao, A.P.; Zekonyte, J.; Blunn, G.; Tozzi, G. Micromechanical evaluation of cortical bone using in situ XCT indentation and digital volume correlation. J. Mech. Behav. Biomed. Mater. 2021, 115, 104298. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.K.; Oliviero, S.; Costa, M.C.; Wilkinson, J.M.; Dall’Ara, E. Heterogeneous Strain Distribution in the Subchondral Bone of Human Osteoarthritic Femoral Heads, Measured with Digital Volume Correlation. Materials 2020, 13, 4619. [Google Scholar] [CrossRef] [PubMed]
- Peña Fernández, M.; Kao, A.P.; Witte, F.; Arora, H.; Tozzi, G. Low-cycle full-field residual strains in cortical bone and their influence on tissue fracture evaluated via in situ stepwise and continuous X-ray computed tomography. J. Biomech. 2020, 113, 110105. [Google Scholar] [CrossRef]
- Fíla, T.; Sleichrt, J.; Kytyr, D.; Kumpova, I.; Vopalensky, M.; Zlámal, P.; Rada, V.; Vavrik, D.; Koudelka, P.; Senck, S. Deformation analysis of the spongious sample in simulated physiological conditions based on in-situ compression, 4D computed tomography and fast readout detector. J. Instrum. 2018, 13, C11021. [Google Scholar] [CrossRef]
Samples | Density 1 | Compression | |||
---|---|---|---|---|---|
(pcf) | (g/cc) | Volume Fraction | Strength (MPa) | Modulus (MPa) | |
1522-526-01 | 20 | 0.32 | 0.21 | 1.3 | 105 |
1522-525 | 30 | 0.48 | 0.31 | 3.2 | 270 |
Metric Measures | Abbreviation | Description | Standard Unit |
---|---|---|---|
Total volume | TV | Volume of the entire ROI | mm3 |
Bone volume | BV | Volume of the region segmented as bone | mm3 |
Bone volume ratio | BV/TV | Ratio of bone volume to total volume in the ROI | % |
Trabecular separation | Tb.Sp | Mean distance between trabeculae | mm |
Trabecular number | Tb.N | Mean number of trabeculae per unit length | mm |
Structure model index | SMI | Measure of trabecular structure (0) for parallel plates and 3 for cylindrical rods | |
Connectivity density | Conn.D | Extent of trabecular connectivity normalized by TV | mm−3 |
Degree of anisotropy | DA | Ratio between maximal and minimal radius of the mean intercept length elliposid |
Sample | LOF [N] | Load Steps [N] |
---|---|---|
SB 1522 525 | 640 | 50–400–500–600–700 |
SB 1522 526 | 360 | 50–200–250–300–400 |
Bos taurus, L4 | 1758 | 50–1000–1500–1750–1800 |
Cervus elaphus, L4 | 4767 | 50–1000–1500–1750–2000 |
Sample | Load Steps [N] | BV/TV [%] | Conn.D | TRI-SMI | Tb.N [mm] | Tb.Th [mm] | Tb.Sp [mm] |
---|---|---|---|---|---|---|---|
SB 525 | 50 | 18.7 ± 1.3 | 0.43 ± 0.02 | 1.376 ± 0.256 | 0.583 ± 0.002 | 0.508 ± 0.020 | 1.762 ± 0.025 |
400 | 18.6 ± 1.3 | 0.44 ± 0.01 | 1.436 ± 0.250 | 0.583 ± 0.003 | 0.509 ± 0.023 | 1.762 ± 0.024 | |
500 | 18.6 ± 1.5 | 0.44 ± 0.02 | 1.432 ± 0.270 | 0.586 ± 0.003 | 0.512 ± 0.025 | 1.760 ± 0.017 | |
600 | 19.0 ± 1.7 | 0.52 ± 0.11 | 1.865 ± 0.161 | 0.607 ± 0.016 | 0.500 ± 0.002 | 1.698 ± 0.028 | |
SB 526 | 50 | 15.7 ± 0.4 | 1.21 ± 0.14 | 0.798 ± 0.060 | 0.535 ± 0.008 | 0.316 ± 0.005 | 1.986 ± 0.029 |
200 | 15.7 ±0.4 | 1.21 ± 0.11 | 0.805 ± 0.051 | 0.537 ± 0.006 | 0.316 ± 0.004 | 1.974 ± 0.023 | |
250 | 15.8 ±0.4 | 1.24 ± 0.12 | 0.820 ± 0.032 | 0.541 ± 0.009 | 0.315 ± 0.004 | 1.963 ± 0.033 | |
300 | 16.2 ±0.4 | 1.25 ± 0.13 | 0.858 ± 0.048 | 0.565 ± 0.011 | 0.315 ± 0.004 | 1.881 ± 0.460 | |
Cervus elaphus | 50 | 41.2 ± 6.8 | 1.35 ± 043 | −1.759 ± 0.688 | 1.508 ± 0.123 | 0.356 ± 0.054 | 0.598 ± 0.054 |
1000 | 40.8 ± 6.8 | 1.35 ± 0.41 | −1.718 ± 0.690 | 1.508 ± 0.122 | 0.360 ± 0.052 | 0.599 ± 0.052 | |
1500 | 40.8 ± 6.7 | 1.33 ± 0.41 | −1.704 ± 0.700 | 1.500 ± 0.114 | 0.361 ± 0.052 | 0.601 ± 0.051 | |
1750 | 40.9 ± 6.6 | 1.31 ± 0.38 | −1.681 ± 0.666 | 1.483 ± 0.100 | 0.363 ± 0.050 | 0.609 ± 0.043 | |
2000 | 41.6 ± 6.2 | 1.31 ± 0.39 | −1.638 ± 0.691 | 1.429 ± 0.036 | 0.366 ± 0.048 | 0.639 ± 0.004 | |
Bos taurus | 50 | 35.3 ± 3.8 | 4.92 ± 0.29 | 0.284 ± 0.249 | 1.596 ± 0.020 | 0.279 ± 0.033 | 0.606 ± 0.003 |
1000 | 36.1 ± 4.1 | 4.95 ± 0.10 | 0.232 ± 0.295 | 1.595 ± 0.004 | 0.280 ± 0.028 | 0.603 ± 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallua, J.D.; Putzer, D.; Jäger, E.; Degenhart, G.; Arora, R.; Schmölz, W. Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT. Materials 2022, 15, 5065. https://doi.org/10.3390/ma15145065
Pallua JD, Putzer D, Jäger E, Degenhart G, Arora R, Schmölz W. Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT. Materials. 2022; 15(14):5065. https://doi.org/10.3390/ma15145065
Chicago/Turabian StylePallua, Johannes D., David Putzer, Elias Jäger, Gerald Degenhart, Rohit Arora, and Werner Schmölz. 2022. "Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT" Materials 15, no. 14: 5065. https://doi.org/10.3390/ma15145065
APA StylePallua, J. D., Putzer, D., Jäger, E., Degenhart, G., Arora, R., & Schmölz, W. (2022). Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT. Materials, 15(14), 5065. https://doi.org/10.3390/ma15145065