Laser Direct Joining of Steel to Polymethylmethacrylate: The Influence of Process Parameters and Surface Mechanical Pre-Treatment on the Joint Strength and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser and Processing Parameters
2.3. Surface Mechanical Pre-Treatment
2.4. Tensile Testing
3. Results
3.1. Optimal Laser Parameters
3.2. Surface Mechanical Pre-Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sultana, T.; Georgiev, G.L.; Baird, R.J.; Auner, G.W.; Newaz, G.; Patwa, R.; Herfurth, H.J. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications. J. Mech. Behav. Biomed. Mater. 2009, 2, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Quazi, M.M.; Ishak, M.; Fazal, M.A.; Arslan, A.; Rubaiee, S.; Aiman, M.H.; Qaban, A.; Yusof, F.; Sultan, T.; Ali, M.M.; et al. A comprehensive assessment of laser welding of biomedical devices and implant materials: Recent research, development and applications. Crit. Rev. Solid State Mater. Sci. 2021, 46, 109–151. [Google Scholar] [CrossRef]
- Grujicic, M.; Sellappan, V.; Omar, M.A.; Seyr, N.; Obieglo, A.; Erdmann, M.; Holzleitner, J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Processing Technol. 2008, 197, 363–373. [Google Scholar] [CrossRef]
- Chen, Y.J.; Yue, T.M.; Guo, Z.N. A new laser joining technology for direct-bonding of metals and plastics. Mater. Des. 2016, 110, 775–781. [Google Scholar] [CrossRef]
- Schricker, K.; Alhomsi, M.; Bergmann, J.P. Thermal efficiency in laser-assisted joining of polymer–metal composites. Materials 2020, 13, 4875. [Google Scholar] [CrossRef]
- Stambke, M.; Schricker, K.; Bergmann, J.P.; Weiß, A. Laser-based joining of metal-thermoplastic tailored welded blanks. Weld. World 2017, 61, 563–573. [Google Scholar] [CrossRef]
- Katayama, S.; Kawahito, Y. Laser direct joining of metal and plastic. Scr. Mater. 2008, 59, 1247–1250. [Google Scholar] [CrossRef]
- Chan, C.W.; Smith, G.C. Fibre laser joining of highly dissimilar materials: Commercially pure Ti and PET hybrid joint for medical device applications. Mater. Des. 2016, 103, 278–292. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.J.; Cheon, J.; Na, S.J. Effect of surface pre-oxidation on laser assisted joining of acrylonitrile butadiene styrene (ABS) and zinc-coated steel. Mater. Des. 2016, 99, 1–9. [Google Scholar] [CrossRef]
- Jung, K.W.; Kawahito, Y.; Takahashi, M.; Katayama, S. Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel. Mater. Des. 2013, 47, 179–188. [Google Scholar] [CrossRef]
- Schricker, K.; Samfaß, L.; Grätzel, M.; Ecke, G.; Bergmann, J.P. Bonding mechanisms in laser-assisted joining of metal-polymer composites. J. Adv. Join. Processes 2020, 1, 100008. [Google Scholar] [CrossRef]
- Hirchenhahn, P.; Al Sayyad, A.; Bardon, J.; Felten, A.; Plapper, P.; Houssiau, L. Highlighting Chemical Bonding between Nylon-6.6 and the Native Oxide from an Aluminum Sheet Assembled by Laser Welding. ACS Appl. Polym. Mater. 2020, 2, 2517–2527. [Google Scholar] [CrossRef]
- Jones, I. Laser welding for plastic components. Assem. Autom. 2002, 22, 129–135. [Google Scholar] [CrossRef]
- Yusof, F.; Yukio, M.; Yoshiharu, M.; Abdul Shukor, M.H. Effect of anodizing on pulsed Nd:YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052). Mater. Des. 2012, 37, 410–415. [Google Scholar] [CrossRef]
- Arai, S.; Kawahito, Y.; Katayama, S. Effect of surface modification on laser direct joining of cyclic olefin polymer and stainless steel. Mater. Des. 2014, 59, 448–453. [Google Scholar] [CrossRef]
- Heckert, A.; Zaeh, M.F. Laser surface pre-treatment of aluminium for hybrid joints with glass fibre reinforced thermoplastics. In Proceedings of the Physics Procedia; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 56, pp. 1171–1181. [Google Scholar]
- Lambiase, F.; Genna, S. Laser-assisted direct joining of AISI304 stainless steel with polycarbonate sheets: Thermal analysis, mechanical characterization, and bonds morphology. Opt. Laser Technol. 2017, 88, 205–214. [Google Scholar] [CrossRef]
- Wahba, M.; Kawahito, Y.; Katayama, S. Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate. J. Mater. Processing Technol. 2011, 211, 1166–1174. [Google Scholar] [CrossRef]
- Al-Sayyad, A.; Lama, P.; Bardon, J.; Hirchenhahn, P.; Houssiau, L.; Plapper, P. Laser joining of titanium alloy to polyamide: Influence of process parameters on the joint strength and quality. Int. J. Adv. Manuf. Technol. 2020, 107, 2917–2925. [Google Scholar] [CrossRef]
- Hino, M.; Mitooka, Y.; Murakami, K.; Urakami, K.; Nagase, H.; Kanadani, T. Effect of aluminum surface state on laser joining between 1050 aluminum sheet and polypropylene resin sheet using insert materials. Mater. Trans. 2011, 52, 1041–1047. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Vidal, E.; Sanz, C.; Lambarri, J.; Quintana, I. Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining. Opt. Laser Technol. 2018, 104, 73–82. [Google Scholar] [CrossRef]
- Hussein, F.I.; Akman, E.; Genc Oztoprak, B.; Gunes, M.; Gundogdu, O.; Kacar, E.; Hajim, K.I.; Demir, A. Evaluation of PMMA joining to stainless steel 304 using pulsed Nd:YAG laser. Opt. Laser Technol. 2013, 49, 143–152. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, X.; Ma, B.; Liu, G.; Zhang, N.; Zhang, Y.; You, D. Optimization of weld strength for laser welding of steel to PMMA using Taguchi design method. Opt. Laser Technol. 2021, 136, 106726. [Google Scholar] [CrossRef]
- Bauernhuber, A.; Markovits, T.; Trif, L.; Csanády, Á. Adhesion of steel and PMMA by means of laser radiation. Mater. Sci. Forum 2017, 885, 61–66. [Google Scholar] [CrossRef]
- Csiszér, T.; Temesi, T.; Borbás, L.; Molnár, L. Laser-assisted Joining of Steel and Cellulose Fiber-reinforced PMMA. Acta Polytech. Hung. 2021, 18, 2021–2237. [Google Scholar] [CrossRef]
- ISO 527-1:2012 (E); Plastics—Determination of Tensile Properties—Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland, 2012.
Property | Value |
---|---|
Density (kg/m3) | 1190 |
Heat Capacity (J/K) | 1.32 |
Specific Heat Capacity (J/kg·K) | 1466 |
Thermal Conductivity (W·m−1·°C−1) | 0.19 |
Crystallinity (%) | 5–15 |
Melting Temperature (°C) | 180 |
Tensile Strength (MPa) | 48 |
Property | Value |
---|---|
Density (kg/m3) | 7850 |
Specific Heat Capacity (J/kg·K) | 460–480 |
Thermal Conductivity (W·m−1·°C−1) | 40–45 |
Melting Temperature (°C) | 1480–1526 |
Tensile Strength (MPa) | 360–510 |
# Set | Peak Power (%) | Pulse Duration (ms) | Pulse Overlapping (%) | Beam Diameter (mm) | No. of Beads/Passes | Energy (J) |
---|---|---|---|---|---|---|
1 | 68 | 10.0 | 90 | 2.0 | 2 | 60.8 |
2 | 68 | 10.0 | 85 | 2.0 | 2 | 60.8 |
3 | 68 | 10.0 | 80 | 2.0 | 2 | 60.8 |
4 | 75 | 10.0 | 80 | 2.0 | 2 | 68.0 |
5 | 75 | 10.0 | 85 | 2.0 | 2 | 68.0 |
6 | 75 | 10.0 | 90 | 2.0 | 2 | 68.0 |
7 | 75 | 10.5 | 80 | 2.0 | 2 | 63.8 |
8 | 75 | 11.0 | 80 | 2.0 | 2 | 63.8 |
9 | 75 | 11.5 | 80 | 2.0 | 2 | 63.8 |
10 | 68 | 11.0 | 80 | 2.0 | 2 | 66.8 |
11 | 68 | 11.0 | 80 | 1.0 | 2 | 66.8 |
12 | 70 | 11.5 | 85 | 1.5 | 2 | 72.2 |
13 | 70 | 11.5 | 85 | 2.0 | 3 | 72.2 |
14 | 70 | 11.5 | 85 | 2.0 | 2 | 72.2 |
15 | 70 | 11.0 | 85 | 2.0 | 4 | 72.2 |
16 | 70 | 11.0 | 85 | 2.0 | 3 | 72.2 |
17 | 70 | 11.0 | 85 | 2.0 | 4 | 72.2 |
18 | 70 | 12.0 | 85 | 2.0 | 2 | 72.2 |
19 | 70 | 12.0 | 85 | 2.0 | 3 | 72.2 |
20 | 70 | 12.0 | 85 | 2.0 | 4 | 72.2 |
# Set | εfailure (%) | Joint Strength (MPa) |
---|---|---|
1 | - | - |
2 | 1.13 | 12.30 |
3 | 0.875 | 7.55 |
4 | - | - |
5 | 0.36 | 3.38 |
6 | 0.62 | 6.08 |
7 | 1.59 | 11.04 |
8 | - | - |
9 | 0.48 | 5.82 |
10 | 0.28 | 13.47 |
11 | 1.93 | 8.38 |
12 | 1.93 | 18.37 |
13 | - | - |
14 | 2.68 | 23.90 |
15 | - | - |
16 | 0.26 | 1.77 |
17 | 0.77 | 3.54 |
18 | 1.82 | 23.89 |
19 | - | - |
20 | 0.22 | 1.42 |
# Set | Grit | εfailure | Joint Strength (MPa) |
---|---|---|---|
12 | 100 | - | - |
12 | 240 | 0.73 | 7.39 |
12 | 600 | 0.28 | 2.79 |
14 | 100 | 1.33 | 12.33 |
14 | 240 | 2.45 | 23.96 |
14 | 600 | 0.45 | 4.75 |
18 | 100 | 0.67 | 6.80 |
18 | 240 | 2.64 | 25.11 |
18 | 600 | 0.745 | 4.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, F.A.O.; Pinto, J.P.; Vilarinho, B.; Pereira, A.B. Laser Direct Joining of Steel to Polymethylmethacrylate: The Influence of Process Parameters and Surface Mechanical Pre-Treatment on the Joint Strength and Quality. Materials 2022, 15, 5081. https://doi.org/10.3390/ma15145081
Fernandes FAO, Pinto JP, Vilarinho B, Pereira AB. Laser Direct Joining of Steel to Polymethylmethacrylate: The Influence of Process Parameters and Surface Mechanical Pre-Treatment on the Joint Strength and Quality. Materials. 2022; 15(14):5081. https://doi.org/10.3390/ma15145081
Chicago/Turabian StyleFernandes, Fábio A. O., José P. Pinto, Bruno Vilarinho, and António B. Pereira. 2022. "Laser Direct Joining of Steel to Polymethylmethacrylate: The Influence of Process Parameters and Surface Mechanical Pre-Treatment on the Joint Strength and Quality" Materials 15, no. 14: 5081. https://doi.org/10.3390/ma15145081
APA StyleFernandes, F. A. O., Pinto, J. P., Vilarinho, B., & Pereira, A. B. (2022). Laser Direct Joining of Steel to Polymethylmethacrylate: The Influence of Process Parameters and Surface Mechanical Pre-Treatment on the Joint Strength and Quality. Materials, 15(14), 5081. https://doi.org/10.3390/ma15145081