Silver-Neodymium Codoped Lithium Aluminum Metaphosphate Glasses for Radio-Photoluminescence Dosimeter
Abstract
:1. Introduction
2. Experiment Details
2.1. Sample Preparation
2.2. Characterization of the Bulk Glass
3. Results and Discussion
3.1. The Absorption Spectra
3.2. The Fluorescence Spectra of the Ag-Doped and Ag–Nd-Codoped Phosphate Glasses at 310 nm Excitation
3.3. The Infrared Transmission Spectra
3.4. The Fluorescence Lifetime at 310 nm Excitation
3.5. The Fluorescence Spectra of the Ag–Nd-Codoped Phosphate Glasses at 380 nm
3.6. The Fluorescence Lifetime at 380 nm Exciatition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kato, T.; Shiratori, D.; Iwao, M.; Takase, H.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Ag Concentration Dependence of Build-Up Effect of Radio-Photoluminescence in Ag-doped P2O5–Al2O3–Na2O–SiO2 Glasses. Sens. Mater. 2021, 33, 2163–2169. [Google Scholar] [CrossRef]
- Iwao, M.; Takase, H.; Shiratori, D.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Ag-doped phosphate glass with high weathering resistance for RPL dosimeter. Radiat. Meas. 2021, 140, 106492. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yanagida-Miyamoto, Y.; Iida, T.; Nanto, H. Current status and future prospect of RPL glass dosimeter. Radiat. Meas. 2020, 136, 106363. [Google Scholar] [CrossRef]
- Sholom, S.; McKeever, S.W.S. High-dose dosimetry with Ag-doped phosphate glass: Applicability test with different techniques. Radiat. Meas. 2020, 132, 106263. [Google Scholar] [CrossRef]
- Hsu, S.M.; Yeh, S.H.; Lin, M.S.; Chen, W.L. Comparison on characteristics of radiophotoluminescent glass dosemeters and thermoluminescent dosemeters. Radiat. Prot. Dosim. 2006, 119, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Kurobori, T.; Yanagida, Y.; Koguchi, Y.; Yamamoto, T. Variable periodic time operated fibre-coupled dosimetry system using Ag-activated RPL glasses with build-up. Radiat. Meas. 2020, 133, 106300. [Google Scholar] [CrossRef]
- Tanaka, H.; Fujimoto, Y.; Saeki, K.; Koshimizu, M.; Yanagida, T.; Asai, K. Radiophotoluminescence properties of Ag-doped mixed phosphate glasses. Radiat. Meas. 2017, 106, 180–186. [Google Scholar] [CrossRef]
- Schulman, J.H.; Ginther, R.J.; Klick, C.C.; Alger, R.S.; Levy, R.A. Dosimetry of x-rays and gamma-rays by radiophotoluminescence. J. Appl. Phys. 1951, 22, 1479–1487. [Google Scholar] [CrossRef]
- Yokota, R.; Imagawa, H. Radiophotoluminescent centers in silver-activated phosphate glass. J. Phys. Soc. 1967, 23, 1038–1048. [Google Scholar] [CrossRef]
- Yokota, R.; Nakajima, S.; Fukui, T.; Fukuda, K. Glass Element for Dosimeters. U.S. Patent 617570A, 1969. [Google Scholar]
- Piesch, E.; Burgkhardt, B.; Fischer, M.; Röber, H.; Ugi, S. Properties of radiophotoluminescent glass dosemeter systems using pulsed laser UV excitation. Radiat. Prot. Dosim. 1986, 17, 293–297. [Google Scholar] [CrossRef]
- Maki, D.; Sakai, T.; Koguchi, Y.; Ohguchi, H.; Sinozaki, W.; Juto, N. Dependence of the Glass Badge response on the different calibration phantoms. J. Nucl. Sci. Technol. 2014, 45, 183–186. [Google Scholar] [CrossRef]
- Kurobori, T.; Zheng, W.; Miyamoto, Y.; Nanto, H.; Yamamoto, T. The role of silver in the radiophotoluminescent properties in silver-activated phosphate glass and sodium chloride crystal. Opt. Mater. 2010, 32, 1231–1236. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Yamamoto, T.; Kinoshita, K.; Koyama, S.; Takei, Y.; Nanto, H.; Shimotsuma, Y.; Sakakura, M.; Miura, K.; Hirao, K. Emission mechanism of radiophotoluminescence in Ag-doped phosphate glass. Radiat. Meas. 2010, 45, 546–549. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Ohno, T.; Takei, Y.; Nanto, H.; Kurobori, T.; Yanagida, T.; Yoshikawa, A.; Nagashima, Y.; Yamamoto, T. Optical properties in Ag+-doped phosphate glass irradiated with X-rays and α-particles. Radiat. Meas. 2013, 55, 72–74. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Takei, Y.; Nanto, H.; Kurobori, T.; Konnai, A.; Yanagida, T.; Yoshikawa, A.; Shimotsuma, Y.; Sakakura, M.; Miura, K. Radiophotoluminescence from silver-doped phosphate glass. Radiat. Meas. 2011, 46, 1480–1483. [Google Scholar] [CrossRef]
- McKeever, S.; Sholom, S.; Shrestha, N.; Klein, D. Radiophotoluminescence from Ag-doped alkali-phosphate glass in real time, during irradiation with a LINAC x-ray beam: A comparison of simulations and experiment. Radiat. Meas. 2020, 133, 106278. [Google Scholar] [CrossRef]
- Fan, S.; Yu, C.; He, D.; Li, K.; Hu, L. Effect of alkali metal oxides on the properties of radio-photoluminescence glasses. J. Non-Cryst. Solids 2011, 357, 2324–2327. [Google Scholar] [CrossRef]
- Fan, S.; Yu, C.; He, D.; Li, K.; Hu, L. Gamma rays induced defect centers in phosphate glass for radio-photoluminescence dosimeter. Radiat. Meas. 2011, 46, 46–50. [Google Scholar] [CrossRef]
- Brow, R.K.; Kirkpatrick, R.J.; Turner, G.L. Local structure of xAl2O3·(1 − x)NaPO3 glasses: An NMR and XPS study. J. Am. Ceram. Soc. 1990, 73, 2293–2300. [Google Scholar] [CrossRef]
- Brow, R.K. Nature of alumina in phosphate glass: I, properties of sodium aluminophosphate glass. J. Am. Ceram. Soc. 1993, 76, 913–918. [Google Scholar] [CrossRef]
- Hsu, S.M.; Yang, H.W.; Huang, D.Y.; Hsu, W.L.; Lu, C.C.; Chen, W.L. Development and physical characteristics of a novel compound radiophotoluminescent glass dosimeter. Radiat. Meas. 2008, 43, 538–541. [Google Scholar] [CrossRef]
- Kuro, T.; Okada, G.; Kawaguchi, N.; Fujimoto, Y.; Masai, H.; Yanagida, T. Scintillation properties of rare-earth doped NaPO3–Al(PO3)3 glasses. Opt. Mater. 2016, 62, 561–568. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Sahu, M.; Dahiya, S.; Deopa, N.; Punia, R.; Rao, A. Physical, structural and optical characterization of Dy3+ doped ZnF2–WO2–B2O3–TeO2 glasses for opto-communication applications. Opt. Mater. 2021, 114, 110937. [Google Scholar] [CrossRef]
- Kumar, V.; Dahiya, S.; Deopa, N.; Punia, R.; Rao, A. Judd-Ofelt itemization and influence of energy transfer on Sm3+ ions activated B2O3–ZnF2–SrO–SiO2 glasses for orange-red emitting devices. J. Lumin. 2021, 229, 117651. [Google Scholar] [CrossRef]
- Kumar, A.; Deopa, N.; Kumar, A.; Chahal, R.; Dahiya, S.; Punia, R.; Rao, A. Structural, thermal, optical and luminescence properties of Dy3+ ions doped Zinc Potassium Alumino Borate glasses for optoelectronics applications. J. Non-Cryst. Solids 2022, 588, 121613. [Google Scholar] [CrossRef]
- Kumar, A.; Sahu, M.; Dahiya, S.; Deopa, N.; Malik, A.; Punia, R.; Rao, A. Spectral characteristics of Tb3+ doped ZnF2–K2O–Al2O3–B2O3 glasses for epoxy free tricolor w-LEDs and visible green laser applications. J. Lumin. 2022, 244, 118676. [Google Scholar] [CrossRef]
- Bishay, A.; El Lozy, H. Electron spin resonance studies of some irradiated alkali borate glasses containing trivalent cerium. J. Non-Cryst. Solids 1969, 1, 437–440. [Google Scholar] [CrossRef]
- Bishay, A. Gamma irradiation studies of some borate glasses. J. Am. Ceram. Soc. 1961, 44, 289–296. [Google Scholar] [CrossRef]
- Ismail, M.M.; Batisha, I.K.; Zur, L.; Chiasera, A.; Ferrari, M.; Lukowiak, A. Optical properties of Nd3+-doped phosphate glasses. Opt. Mater. 2020, 99, 109591. [Google Scholar] [CrossRef]
- Delbecq, C.J.; Toyozawa, Y.; Yuster, P.H. Tunneling recombination of trapped electrons and holes in KCl:AgCl and KCl:TlCl. Phys. Rev. B 1974, 9, 4497–4505. [Google Scholar] [CrossRef]
- McKeever, S.; Sholom, S.; Shrestha, N. Observations regarding the build-up effect in radiophotoluminescence of silver-doped phosphate glasses. Radiat. Meas. 2019, 123, 13–20. [Google Scholar] [CrossRef]
- Kato, T.; Shiratori, D.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Evaluation of quantum yields and thermally stimulated luminescence glow curves of Ag-doped phosphate glasses. Jpn. J. Appl. Phys. 2020, 59, 112001. [Google Scholar] [CrossRef]
- Yamamoto, T.; Maki, D.; Sato, F.; Miyamoto, Y.; Nanto, H.; Iida, T. The recent investigations of radiophotoluminescence and its application. Radiat. Meas. 2011, 46, 1554–1559. [Google Scholar] [CrossRef]
- McKeever, S.W.; Sholom, S.; Shrestha, N.; Klein, D.M. Build-up of radiophotoluminescence (RPL) in Ag-doped phosphate glass in real-time both during and after exposure to ionizing radiation: A proposed model. Radiat. Meas. 2020, 132, 106246. [Google Scholar] [CrossRef]
- Klym, H.; Ingram, A.; Shpotyuk, O.; Hotra, O.; Popov, A.I. Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses. Radiat. Meas. 2016, 90, 117–121. [Google Scholar] [CrossRef]
- Klym, H.; Karbovnyk, I.; Luchechko, A.; Kostiv, Y.; Pankratova, V.; Popov, A.I. Evolution of Free Volumes in Polycrystalline BaGa2O4 Ceramics Doped with Eu3+ Ions. Crystals 2021, 11, 1515. [Google Scholar] [CrossRef]
- Wei, T.; Tian, Y.; Tian, C.; Jing, X.; Cai, M.; Zhang, J.; Zhang, L.; Xu, S. Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass. J. Alloys Compd. 2015, 618, 95–101. [Google Scholar] [CrossRef]
- Schneckenburger, H.; Regulla, D.; Unsöld, E. Time-resolved investigations of radiophotoluminescence in metaphosphate glass dosimeters. Appl. Phys. A 1981, 26, 23–26. [Google Scholar] [CrossRef]
- Mangalam, V.; Pita, K. Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO2 Film for Emission at 614 nm. Materials 2017, 10, 930. [Google Scholar] [CrossRef]
- Shen, H.; Shang, H.; Gao, Y.; Yang, D.; Li, D. Efficient Sensitized Photoluminescence from Erbium Chloride Silicate via Interparticle Energy Transfer. Materials 2022, 15, 1093. [Google Scholar] [CrossRef]
- Gopi, S.; Jose, S.K.; Sreeja, E.; Manasa, P.; Unnikrishnan, N.V.; Joseph, C.; Biju, P.R. Tunable green to red emission via Tb sensitized energy transfer in Tb/Eu co-doped alkali fluoroborate glass. J. Lumin. 2017, 192, 1288–1294. [Google Scholar] [CrossRef]
- Costa, F.B.; Yukimitu, K.; de Oliveira Nunes, L.A.; da Silva Figueiredo, M.; Silva, J.R.; da Cunha Andrade, L.H.; Lima, S.M.; Moraes, J.C.S. High Nd3+ → Yb3+ energy transfer efficiency in tungsten-tellurite glass: A promising converter for solar cells. J. Am. Ceram. Soc. 2017, 100, 1956–1962. [Google Scholar] [CrossRef]
Sample | LiPO3 | Al (PO3)3 | Nd2O3 | Ag2O |
---|---|---|---|---|
Matrix glass | 70 | 30 | − | − |
Nd-doped | 69.825 | 29.925 | 0.25 | − |
Ag-doped | 69.825 | 29.925 | − | 0.25 |
Ag–Nd-codoped | 69.65 | 29.85 | 0.25 | 0.25 |
Radiation Doses | Type of Phosphate Glasses | Background Doses Lifetime τ1, RPL Lifetime τ2 (the Error Is Less Than 5%) | Energy Transfer Efficiency η |
---|---|---|---|
50 Gy | Ag-doped | τ1 = 116 ns, τ2 = 2408 ns | 22.97% |
Ag–Nd-codoped | τ1 = 80 ns, τ2 = 1855 ns | ||
100 Gy | Ag-doped | τ1 = 169 ns, τ2 = 2515 ns | 24.13% |
Ag–Nd-codoped | τ1 = 155 ns, τ2 = 1908 ns | ||
150 Gy | Ag-doped | τ1 = 138 ns, τ2 = 2475 ns | 27.15% |
Ag–Nd-codoped | τ1 = 161 ns, τ2 = 1803 ns | ||
200 Gy | Ag-doped | τ1 = 143 ns, τ2 = 2413 ns | 23.08% |
Ag–Nd-codoped | τ1 = 194 ns, τ2 = 1856 ns | ||
250 Gy | Ag-doped | τ1 = 224 ns, τ2 = 2553 ns | 20.56% |
Ag–Nd-codoped | τ1 = 224 ns, τ2 = 2028 ns |
Radiation Doses | Type of Phosphate Glasses | Background Doses Lifetime τ1, RPL Lifetime τ2 (the Error Is Less Than 5%) | Energy Transfer Efficiency η |
---|---|---|---|
50 Gy | Ag-doped | τ1 = 179 ns, τ2 = 2887 ns | 52.89% |
Ag–Nd-codoped | τ1 = 26 ns, τ2 = 1360 ns | ||
100 Gy | Ag-doped | τ1 = 92 ns, τ2 = 2124 ns | 32.43% |
Ag–Nd-codoped | τ1 = 52 ns, τ2 = 1435 ns | ||
150 Gy | Ag-doped | τ1 = 135 ns, τ2 = 2237 ns | 46.40% |
Ag–Nd-codoped | τ1 = 30 ns, τ2 = 1199 ns | ||
200 Gy | Ag-doped | τ1 = 122 ns, τ2 = 2206 ns | 46.55% |
Ag–Nd-codoped | τ1 = 41 ns, τ2 = 1179 ns | ||
250 Gy | Ag-doped | τ1 = 137 ns, τ2 = 2262 ns | 49.11% |
Ag–Nd-codoped | τ1 = 23 ns, τ2 = 1121 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Cheng, J.; Fan, S.; Wang, X.; Chen, W.; Chen, S.; Hu, L. Silver-Neodymium Codoped Lithium Aluminum Metaphosphate Glasses for Radio-Photoluminescence Dosimeter. Materials 2022, 15, 5527. https://doi.org/10.3390/ma15165527
Ma X, Cheng J, Fan S, Wang X, Chen W, Chen S, Hu L. Silver-Neodymium Codoped Lithium Aluminum Metaphosphate Glasses for Radio-Photoluminescence Dosimeter. Materials. 2022; 15(16):5527. https://doi.org/10.3390/ma15165527
Chicago/Turabian StyleMa, Xiben, Jimeng Cheng, Sijun Fan, Xin Wang, Wei Chen, Shubin Chen, and Lili Hu. 2022. "Silver-Neodymium Codoped Lithium Aluminum Metaphosphate Glasses for Radio-Photoluminescence Dosimeter" Materials 15, no. 16: 5527. https://doi.org/10.3390/ma15165527
APA StyleMa, X., Cheng, J., Fan, S., Wang, X., Chen, W., Chen, S., & Hu, L. (2022). Silver-Neodymium Codoped Lithium Aluminum Metaphosphate Glasses for Radio-Photoluminescence Dosimeter. Materials, 15(16), 5527. https://doi.org/10.3390/ma15165527