Fiber-Bragg-Grating-Based Displacement Sensors: Review of Recent Advances
Abstract
:1. Introduction
2. Fiber-Bragg-Grating-Based Displacement Sensors
3. Advances in Wavelength Detection Methods
3.1. According to Cantilever Beam Structures
3.2. According to Structures with Two Fixed Ends
3.3. According to Other Structures
4. Advances in Other Detecting Methods
4.1. Intensity Detecting Methods
4.2. Phase Detecting Methods
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Phil. Trans. R. Soc. A 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection fiber fabrication. Appl. Phys. Lett. 1978, 32, 647. [Google Scholar] [CrossRef]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 1989, 14, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.O.; Malo, B.; Bilodeau, F.; Johnson, D.C.; Albert, J. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 1993, 62, 1035. [Google Scholar] [CrossRef]
- Lv, J.; Hu, Z.; Ren, G.; Zhang, C.; Liu, Y. Research on new FBG displacement sensor and its application in Beijing Daxing Airport project. Optik 2019, 178, 146–155. [Google Scholar] [CrossRef]
- Di Palma, P.; Palumbo, G.; Della Pietra, M.; Canale, V.; Alviggi, M.; Iadicicco, A.; Campopiano, S. Fiber Bragg Gratings Strain Sensors for Deflection Estimation of a Two-Dimensional Structure. In Proceedings of the SPIE 11028, Optical Sensors, Prague, Czech Republic, 11 April 2019; Volume 1102828. [Google Scholar]
- Di Palma, P.; Palumbo, G.; Della Pietra, M.; Canale, V.; Alviggi, M.; Iadicicco, A.; Campopiano, S. Deflection Monitoring Method for Two-Dimensional Structure based on Fiber Bragg Grating Sensors Measurements. In Proceedings of the SPIE 11199, Seventh European Workshop on Optical Fibre Sensors, Limassol, Cyprus, 28 August 2019; p. 111990K. [Google Scholar]
- Vidakovic, M.; Armakolas, I.; Sun, T.; Carlton, J.; Grattan, K.T.V. Fibre Bragg grating-based acoustic sensor array for improved condition monitoring of marine lifting surfaces. J. Light. Technol. 2016, 34, 4336–4342. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, Q. Slip and roughness detection of robotic fingertip based on FBG. Sens. Actuator A Phys. 2019, 287, 143–149. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, X.; Fang, Y.; Zhang, H. Active monitoring and vibration control of smart structure aircraft based on FBG sensors and PZT actuators. Aerosp. Sci. Technol. 2017, 63, 101–109. [Google Scholar] [CrossRef]
- Goossens, S.; De Pauw, B.; Geernaert, T.; Salmanpour, M.S.; Sharif, K.Z.; Karachalios, E.; Saenz-Castillo, D.; Thienpont, H.; Berghmans, F. Aerospace-grade surface mounted optical fibre strain sensor for structural health monitoring on composite structures evaluated against in-flight conditions. Smart Mater. Struct. 2019, 28, 065008. [Google Scholar] [CrossRef]
- Kisała, P.; Harasim, D.; Mroczka, J. Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating. Opt. Express 2016, 24, 29922–29929. [Google Scholar] [CrossRef]
- Rodrigues, C.; Felix, C.; Figueiras, J. Fiber–optic–based displacement transducer to measure bridge deflections. Struct. Health Monit. 2011, 10, 147–156. [Google Scholar] [CrossRef]
- Pinto, N.; Ribeiro, C.A.; Gabriel, J.; Calçada, R. Dynamic monitoring of railway track displacement using an optical system. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2015, 229, 280–290. [Google Scholar] [CrossRef]
- Bonopera, M.; Chang, K.C.; Chen, C.C.; Lee, Z.K.; Tullini, N. Axial load detection in compressed steel beams using FBG–DSM sensors. Smart Struct. Syst. 2018, 21, 53–64. [Google Scholar]
- Bonopera, M.; Chang, K.C.; Chen, C.C.; Lin, T.K.; Tullini, N. Compressive column load identification in steel space frames using second–order deflection–based methods. Int. J. Struct. Stab. Dyn. 2018, 18, 1850092. [Google Scholar] [CrossRef]
- Skelton, S.B.; Richardson, J.A. A transducer for measuring tensile strains in concrete bridge girders. Exp. Mech. 2006, 46, 325–332. [Google Scholar] [CrossRef]
- Kang, L.H.; Kim, D.K.; Han, J.H. Estimation of dynamic structural displacements using fiber Bragg grating strain sensors. J. Sound Vib. 2007, 305, 534–542. [Google Scholar] [CrossRef]
- Gupta, B.D. Fiber Optic Sensors: Principles and Applications; New India Publishing: New Delhi, India, 2006. [Google Scholar]
- Kashyap, R. Principles of Optical Fiber Grating Sensors, 2nd ed.; École Polytechnique de Montréal, University of Montréal: Montréal, QC, Canada, 2010. [Google Scholar]
- Sahota, J.K.; Gupta, N.; Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020, 59, 060901. [Google Scholar] [CrossRef]
- Guan, B.O.U.; Liu, Z.G.; Kai, G.Y.; Dong, X.Y. Fiber Bragg grating displacement sensor based on a cantilever beam. Acta Photonica Sin. 1999, 28, 983–985. [Google Scholar]
- Liu, W.; Guo, Y.; Xiong, L.; Kuang, Y. Fiber Bragg grating based displacement sensors: State of the art and trends. Sens. Rev. 2019, 39, 87–98. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Liu, X.; Zhang, Y.; Peng, W. Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating. Photonic Sens. 2015, 5, 351–356. [Google Scholar] [CrossRef]
- Guo, Y.X.; Xiong, L.; Kong, J.Y.; Zhang, Z.Y.; Qin, L. Sliding type fiber Bragg grating displacement sensor. Guangxue Jingmi Gongcheng/Opt. Precis. Eng. 2017, 25, 50–58. [Google Scholar]
- Nazeer, N.; Groves, R.M.; Benedictus, R. Simultaneous Position and Displacement Sensing using Two Fibre Bragg Grating Sensors. In Proceedings of the SPIE 10970, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Denver, CO, USA, 27 March 2019; p. 109701Z. [Google Scholar]
- Li, S.; Zhongxin, S.; Chunwei, Z.; Yansheng, S. A pitman style fiber Bragg grating displacement sensor based on wedge cavity structure. Mech. Mach. Sci. 2019, 72, 313–324. [Google Scholar]
- Lyu, G.; Bi, C.; Zhang, Y.; Wang, C.; Wang, M.; Jiang, X. Large-range bridge beam-gap displacement sensors based on cantilever beam with fiber Bragg grating. Lect. Notes Electr. Eng. 2020, 567, 3–11. [Google Scholar]
- Hong, C.; Zhang, Y.; Yang, Y.; Yuan, Y. A FBG based displacement transducer for small soil deformation measurement. Sens. Actuator A Phys. 2019, 286, 35–42. [Google Scholar] [CrossRef]
- Bonopera, M.; Chang, K.C.; Chen, C.C.; Lee, Z.K.; Sung, Y.C.; Tullini, N. Fiber Bragg grating–differential settlement measurement system for bridge displacement monitoring: Case study. J. Bridge Eng. 2019, 24, 05019011. [Google Scholar] [CrossRef]
- Li, T.; Shi, C.; Ren, H. A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution. IEEE Photon. Technol. Lett. 2017, 29, 1199–1202. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, Y.; Jiang, G.; Jiang, L.; Zhou, X. Fiber Bragg grating displacement sensor with high measurement accuracy for crack monitoring. IEEE Sens. J. 2019, 19, 10506–10512. [Google Scholar] [CrossRef]
- Tian, C.; Wang, Z.; Sui, Q.; Wang, J.; Dong, Y. Design, optimization and improvement of FBG flexible sensor for slope displacement profiles measurement. Sensors 2019, 19, 3750. [Google Scholar] [CrossRef]
- Li, C.; Sun, L.; Xu, Z.; Wu, X.; Liang, T.; Shi, W. Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring. Int. J. Struct. Stab. Dyn. 2020, 20, 2040011. [Google Scholar] [CrossRef]
- Thomas, J.; Rajanna, T.R.; Asokan, S. Temperature compensated FBG displacement sensor for long-range applications. IEEE Sens. Lett. 2020, 4, 8931563. [Google Scholar] [CrossRef]
- Wu, D.; Li, T.; Khyam, M.O.; Tan, Y.; Zhou, Z. A temperature self-compensation submicron displacement FBG sensor with tilt parallel-suspended dual-optical fibers. Sens. Actuator A Phys. 2021, 332, 113200. [Google Scholar] [CrossRef]
- Li, H.; Xu, G.; Gui, X.; Liang, L.; Li, Z. An FBG displacement sensor in deformation monitoring of subway floating slab. IEEE Sens. J. 2021, 21, 2963–2971. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Zhao, X. Monitoring of vertical displacement of concrete slab end at pavement joint based on FBG-dowel bar signal. J. Transp. Eng. B Pavements 2022, 148, 04022012. [Google Scholar] [CrossRef]
- Kim, S.W.; Yun, D.W.; Park, D.U.; Chang, S.J.; Park, J.B. Vehicle load estimation using the reaction force of a vertical displacement sensor based on fiber Bragg grating. Sensors 2022, 22, 1572. [Google Scholar] [CrossRef] [PubMed]
- Alias, M.A.; Ismail, M.F.; Sa’ad, M.S.M.; Zaini, M.K.A.; Lim, K.S.; Grattan, K.T.V.; Brambilla, G.; Rahman, B.M.A.; Reduan, S.A.; Ahmad, H. A high-precision extensometer system for ground displacement measurement using fiber Bragg grating. IEEE Sens. J. 2022, 22, 8509–8521. [Google Scholar] [CrossRef]
- Humphries, J.R.; Armstrong, D.R.; Weeks, A.R.; Malocha, D.C. Standalone SAW Sensor Interrogator using an Embedded Computer and Software Defined Radio. In Proceedings of the 2015 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Orlando, FL, USA, 14–16 December 2015; pp. 1–5. [Google Scholar]
- Dong, X.; Tam, H.Y. A Novel Temperature-Compensated, Intensity-Modulated Fiber Bragg Grating Sensor System. In Proceedings of the 1st Asia-Pacific Optical Fiber Sensors Conference, Chengdu, China, 7–9 November 2008; pp. 1–4. [Google Scholar]
- Zou, Y.; Dong, X.; Lin, G.; Adhami, R. Wide range FBG displacement sensor based on twin-core fiber filter. J. Light. Technol. 2012, 30, 337–343. [Google Scholar] [CrossRef]
- Ghaffar, A.; Li, Q.; Mehdi, I.; Abro, K.; Karim, N.; Chimere, O.C.; Mehdi, M.; Chen, B.W. A novel sensor design for displacement measurement using plastic optical fiber-based on face-coupling method. Opt. Fiber Technol. 2021, 67, 102684. [Google Scholar] [CrossRef]
- Weis, R.S.; Kersey, A.D.; Berkoff, T.A. A four-element fiber grating sensor array with phase-sensitive detection. IEEE Photonics Technol. Lett. 1994, 6, 1469–1472. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zhao, Y.; Wang, Q. Improved design of slow light interferometer and its application in FBG displacement sensor. Sens. Actuator A Phys. 2014, 214, 168–174. [Google Scholar] [CrossRef]
- Tao, S.; Dong, X.; Lai, B. A sensor for simultaneous measurement of displacement and temperature based on the Fabry-Pérot effect of a fiber Bragg grating. IEEE Sens. J. 2017, 17, 261–266. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B.; Yu, F.; Wang, D.N.; Li, Y. Ultrahigh-Resolution Wavelength Scanning System with FBG Fabry-Perot Interferometer for Displacement Sensing. In Proceedings of the 16th International Conference on Optical Communications and Networks, Wuzhen, China, 7–10 August 2017. [Google Scholar]
- Zhu, L.; Lu, L.; Zhuang, W.; Zeng, Z.; Dong, M. A random-displacement measurement by combining a magnetic scale and two fiber Bragg gratings. J. Vis. Exp. 2019, 151, e58182. [Google Scholar] [CrossRef] [PubMed]
Reference | Method of Wavelength Demodulation | Technique | Packaging | Application | Range (mm) | Sensitivity (pm/mm) | Resolution (mm) | Accuracy (mm) |
---|---|---|---|---|---|---|---|---|
Chen et al. [24] | Cantilever beam structure | Hydraulic telescopic cylinder linked to a cantilever | FBG formed by a single-mode fiber and photosensitive fiber | Displacements in industrial environments | 0~45 | 36.00 | — | — |
Guo et al. [25] | Cantilever beam structure | Slider combined with a cantilever | Bending strain of cantilever sensed by FBG | Micro-displacements monitoring | 0~100 0~20 | 20.11 123.00 | — | — |
Nazeer et al. [26] | Cantilever beam structure | Interferometry and FBG sensing | FBG sensing along the cantilever | Any beam of any material | 0~20 | — | — | ±1 |
Li et al. [27] | Cantilever beam structure | Wedge cavity sensing structure | — | Displacements of civil structures | 0~50 | 5.58 | — | — |
Lyu et al. [28] | Cantilever beam structure | — | — | Displacements of high-speed railway bridges | 0~200 | 4.53 | — | — |
Hong et al. [29] | Structure with two fixed ends | Anchorage plate and PVC tube | FBG sealed with PVC tube | Soil strain monitoring | 0~0.9 | — | 0.0747 | — |
Bonopera et al. [30] | Structure with two fixed ends | Hydrostatic system of communicating vessels | FBG encapsulated in vessels | Long-span bridge displacements | 0~180 | — | 0.01 | — |
Li et al. [31] | Structure with two fixed ends | T-shaped cantilever and slider | Prestressed FBG bonded from ends | Sub-micrometer displacements of micro-systems | 1~2 | 2086.27 | 0.00048 | — |
Xiong et al. [32] | Structure with two fixed ends | Two FBGs prestressed on two cylindrical rods | Prestressed FBG bonded from ends | Crack monitoring | 0~2 | 3304.70 | 3.03 × 10−5 | 0.02 |
Tian et al. [33] | Structure with two fixed ends | Flexible FBG sensor | Bending deformation of flexible FBG | Displacements of slope profiles | — | — | 0.01 | — |
Li et al. [34] | Structure with two fixed ends | FBG with embedded spring | FBG wavelength shifts | High-precision displacements of civil structures | — | 23.96 | — | — |
Thomas et al. [35] | Other structure | Wire combined with a sensing arm | Two FBGs attached on sensing arm | Displacements in industrial environment | 0~150 | 23.80 | 0.042 | — |
Wu et al. [36] | Other structure | Two FBGs combined with mechanical units | Two FBGs suspended in a tilt parallel mode | Displacements at micro-scale | 0~0.5 | 1518.60 | — | — |
Li et al. [37] | Other structure | FBG combined with mechanical units | FBG attached on thin-walled ring | Displacements of subway floating slabs | 0~20 | 36.36 | — | 0.0825 |
Chen et al. [38] | Other structure | Dowel bar containing four FBGs | FBG strains of four points on dowel bar | Displacements of pavement slabs | 0~1 | — | — | — |
Kim et al. [39] | Other structure | — | — | Detection of load of bridge vehicles | — | — | — | — |
Alias et al. [40] | Other structure | Embedded FBG | Wavelength shifts of embedded FBG | High-precision monitoring of ground movements | — | 1.58 | — | — |
Reference | Method of Signal Demodulation | Technique | Packaging | Application | Range (mm) | Sensitivity | Resolution (mm) | Accuracy (mm) |
---|---|---|---|---|---|---|---|---|
Zou et al. [43] | Intensity method | Twin-core optical fiber between two single-mode optical fibers | Intensity variation between two single-mode optical fibers | High-precision displacement monitoring | — | — | — | — |
Ghaffar et al. [44] | Intensity method | Plastic optical fiber with a large and a small diameter | Intensity variation of plastic optical fiber | High-precision displacement monitoring | 0~1.3 1.6~2 | 1.977 nW/μm 12.25 nW/μm | 5.058 × 10−5 8.16 × 10−6 | — |
Zhang et al. [46] | Phase method | Optical fiber MZI based on slow light in PI-PCW | FBG attached on Omega-like beam | High-precision displacement monitoring | 0~55.6 | 1.035 rad/mm | — | — |
Tao et al. [47] | Phase method | Fabry–Pérot (FP) effect of FBG | Apodized FBG glued on a thin-walled ring | High-precision displacement monitoring | 0~2 | 117 pm/mm | — | 0.085 |
Zhang et al. [48] | Phase method | Wavelength scanning laser with FBG FPI | Scanning of radio frequency signal using two FBGs | Monitoring of micro-displacement with ultrahigh resolution | — | 35.70 MHz/μm | — | — |
Zhu et al. [49] | Phase method | Magnetic scale, as transferring mechanism, combined with two FBGs | Phase variation between two FBGs | Displacement monitoring in research and industry | — | — | — | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonopera, M. Fiber-Bragg-Grating-Based Displacement Sensors: Review of Recent Advances. Materials 2022, 15, 5561. https://doi.org/10.3390/ma15165561
Bonopera M. Fiber-Bragg-Grating-Based Displacement Sensors: Review of Recent Advances. Materials. 2022; 15(16):5561. https://doi.org/10.3390/ma15165561
Chicago/Turabian StyleBonopera, Marco. 2022. "Fiber-Bragg-Grating-Based Displacement Sensors: Review of Recent Advances" Materials 15, no. 16: 5561. https://doi.org/10.3390/ma15165561
APA StyleBonopera, M. (2022). Fiber-Bragg-Grating-Based Displacement Sensors: Review of Recent Advances. Materials, 15(16), 5561. https://doi.org/10.3390/ma15165561