Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing
Abstract
:1. Introduction
2. Goal of the Review
3. 3D Printing with PLA
3.1. Layered Printing with PLA
3.2. Modifications of the PLA Filament
4. Electrical Conductivity Applications
5. Multi-Material Printing-FDM Capabilities
- -
- manual change of material between layers [146] (it is necessary to pause the printing, change the spool, clean the nozzle, usually manually change the temperature, resume printing, and change the spool each time when printing with a different material)
- -
- the use of accessory equipment that combine several filaments at a given stage of printing and enable printing from several polymers using one combined filament fiber.
6. Plastic Waste and Economics of Additive Manufacturing
7. Discussion and Conclusions
- -
- PLA is a biopolymer that, compared to other polymers used for 3D printing, emits fewer harmful particles into the atmosphere during extrusion, and thus pollutes the environment less and reduces the risk of respiratory diseases for printer operators.
- -
- the ability to perform multiple sterilizations of ABS and PLA combinations makes their use possible in the medical industry. It may lead to waste reduction due to the possibility of using the products multiple times.
- -
- the authors are researching various geometries of samples, making it possible for users to select the tests closest to the geometry of specific commercial elements.
- -
- annealing or friction welding of printed objects can lead to improvement of their strength properties.
- -
- to strengthen the bonds, dicumylt peroxide (DCP) can be used as a crosslinking agent.
- -
- the use of locking mechanisms in the form of overlapping filaments improves the quality of the samples and the strength of the bonds between the materials.
- -
- for selected material bonds, the negative influence of the lower filling on the strength of the samples was indicated compared to 100% filling.
- -
- parameters influencing the quality of printed objects are, among others, print temperature, degree of filling, layer thickness, and surface development.
- -
- the PLA polymer can be used in implants as a carrier of medical substances released only after implantation in the patient’s body.
- -
- computer planning can be the basis for considering and planning the production process, which translates into the optimum use of material and energy for production.
- -
- 3D printing reduces waste and can revolutionize logistics and reduce costs and distribution time.
8. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouzouita, A.; Notta-Cuvier, D.; Raquez, J.-M.; Lauro, F.; Dubois, P. Poly(Lactic Acid)-Based Materials for Automotive Applications. In Industrial Applications of Poly (Lactic Acid); Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Taczała, J.; Czepułkowska, W.; Konieczny, B.; Sokołowski, J.; Kozakiewicz, M.; Szymor, P. Comparison of 3D Printing Mjp and Fdm Technology in Dentistry. Arch. Mater. Sci. Eng. 2020, 101, 32–40. [Google Scholar] [CrossRef]
- Pervaiz, S.; Qureshi, T.A.; Kashwani, G.; Kannan, S. 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review. Materials 2021, 14, 4520. [Google Scholar] [CrossRef] [PubMed]
- Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused Deposition Modelling: Current Status, Methodology, Applications and Future Prospects. Addit. Manuf. 2021, 47, 102378. [Google Scholar] [CrossRef]
- Melnikova, R.; Ehrmann, A.; Finsterbusch, K. 3D Printing of Textile-Based Structures by Fused Deposition Modelling (FDM) with Different Polymer Materials. IOP Conf. Ser. Mater. Sci. Eng. 2014, 62, 012018. [Google Scholar] [CrossRef]
- Avérous, L.; Pollet, E. Biodegradable Polymers. In Environmental Silicate Nano-Biocomposites; Springer: London, UK, 2012. [Google Scholar]
- Luckachan, G.E.; Pillai, C.K.S. Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011, 19, 637–676. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef]
- Zhang, Z.; Ortiz, O.; Goyal, R.; Kohn, J. Biodegradable Polymers. In Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Heckele, M.; Schomburg, W.K. Review on Micro Molding of Thermoplastic Polymers. J. Micromech. Microeng. 2004, 14, R1. [Google Scholar] [CrossRef]
- Citarella, R.; Giannella, V. Additive Manufacturing in Industry. Appl. Sci. 2021, 11, 840. [Google Scholar] [CrossRef]
- Maguire, A.; Pottackal, N.; Saadi, M.A.S.R.; Rahman, M.M.; Ajayan, P.M. Additive Manufacturing of Polymer-Based Structures by Extrusion Technologies. Oxf. Open Mater. Sci. 2020, 1, itaa004. [Google Scholar] [CrossRef]
- Tezel, T.; Ozenc, M.; Kovan, V. Impact Properties of 3D-Printed Engineering Polymers. Mater. Today Commun. 2021, 26, 102161. [Google Scholar] [CrossRef]
- Budzik, G.; Woźniak, J.; Paszkiewicz, A.; Przeszłowski, Ł.; Dziubek, T.; Dębski, M. Methodology for the Quality Control Process of Additive Manufacturing Products Made of Polymer Materials. Materials 2021, 14, 2202. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, E.; Chang, A.Y.; Balassone, D.; Ford, J.; Cheng, T.L.; Little, D.; Menezes, M.P.; Hogan, S.; Burns, J. Feasibility of designing, manufacturing and delivering 3D printed ankle-foot orthoses: A systematic review. J. Foot Ankle Res. 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Culmone, C.; Smit, G.; Breedveld, P. Additive Manufacturing of Medical Instruments: A State-of-the-Art Review. Addit. Manuf. 2019, 27, 461–473. [Google Scholar] [CrossRef]
- Chen, J.; Wang, K.; Zhang, C.; Wang, B. An Efficient Statistical Approach to Design 3D-Printed Metamaterials for Mimicking Mechanical Properties of Soft Biological Tissues. Addit. Manuf. 2018, 24, 341–352. [Google Scholar] [CrossRef]
- Murr, L.E.; Gaytan, S.M.; Medina, F.; Lopez, H.; Martinez, E.; Machado, B.I.; Hernandez, D.H.; Martinez, L.; Lopez, M.I.; Wicker, R.B.; et al. Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1999–2032. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. ACS Appl. Bio Mater. 2021, 4, 325–369. [Google Scholar] [CrossRef]
- Silva, M.; Pinho, I.S.; Covas, J.A.; Alves, N.M.; Paiva, M.C. 3D Printing of Graphene-Based Polymeric Nanocomposites for Biomedical Applications. Funct. Compos. Mater. 2021, 2, 8. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Gervaso, F.; Scalera, F.; Montagna, F.; Maiullaro, T.; Sannino, A.; Maffezzoli, A. 3D Printing of Hydroxyapatite Polymer-Based Composites for Bone Tissue Engineering. J. Polym. Eng. 2017, 37, 741–746. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Gervaso, F.; Scalera, F.; Padmanabhan, S.K.; Madaghiele, M.; Montagna, F.; Sannino, A.; Licciulli, A.; Maffezzoli, A. Highly Loaded Hydroxyapatite Microsphere/PLA Porous Scaffolds Obtained by Fused Deposition Modelling. Ceram. Int. 2019, 45, 2803–2810. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, G.; Junka, R.; Chang, N.; Anwar, A.; Wang, H.; Yu, X. Fabrication of Polylactic Acid (PLA)-Based Porous Scaffold through the Combination of Traditional Bio-Fabrication and 3D Printing Technology for Bone Regeneration. Colloids Surf. B Biointerfaces 2021, 197, 111420. [Google Scholar] [CrossRef]
- Chen, M.Y.; Skewes, J.; Daley, R.; Woodruff, M.A.; Rukin, N.J. Three-Dimensional Printing versus Conventional Machining in the Creation of a Meatal Urethral Dilator: Development and Mechanical Testing. BioMed. Eng. OnLine 2020, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Kurt, S.; Selviler-Sizer, S.; Onuk, B.; Kabak, M. Comparison of Sheep Scapula Models Created with Polylactic Acid and Thermoplastic Polyurethane Filaments by Three-dimensional Modelling. Anat. Histol. Embryol. 2022, 51, 244–249. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Tatineni, J.; Cadd, B.; Peart, G.; Gibson, I. Advanced Auricular Prosthesis Development by 3D Modelling and Multi-Material Printing. KnE Eng. 2017, 2, 37. [Google Scholar] [CrossRef]
- Pinho, L.A.G.; Lima, A.L.; Sa-Barreto, L.L.; Gratieri, T.; Gelfuso, G.M.; Marreto, R.N.; Cunha-Filho, M. Preformulation Studies to Guide the Production of Medicines by Fused Deposition Modeling 3D Printing. AAPS PharmSciTech 2021, 22, 263. [Google Scholar] [CrossRef] [PubMed]
- Micó-Vicent, B.; Perales, E.; Huraibat, K.; Martínez-Verdú, F.M.; Viqueira, V. Maximization of FDM-3D-Objects Gonio-Appearance Effects Using PLA and ABS Filaments and Combining Several Printing Parameters: “A Case Study”. Materials 2019, 12, 1423. [Google Scholar] [CrossRef] [PubMed]
- Amendola, C.; Lacerenza, M.; Pirovano, I.; Contini, D.; Spinelli, L.; Cubeddu, R.; Torricelli, A.; Re, R. Optical Characterization of 3D Printed PLA and ABS Filaments for Diffuse Optics Applications. PLoS ONE 2021, 16, e0253181. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, G.; Ehrmann, A. Optical Elements from 3D Printed Polymers. E-Polymers 2021, 21, 549–565. [Google Scholar] [CrossRef]
- Hsueh, M.-H.; Lai, C.-J.; Wang, S.-H.; Zeng, Y.-S.; Hsieh, C.-H.; Pan, C.-Y.; Huang, W.-C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling. Polymers 2021, 13, 1758. [Google Scholar] [CrossRef]
- Piyush; Kumar, R.; Kumar, R. 3D Printing of Food Materials: A State of Art Review and Future Applications. Mater. Today Proc. 2020, 33, 1463–1467. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.C.; Choi, J.W.; Lee, I.H. A Review on 3D Printed Smart Devices for 4D Printing. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 373–383. [Google Scholar] [CrossRef]
- Koske, D.; Ehrmann, A. Advanced Infill Designs for 3D Printed Shape-Memory Components. Micromachines 2021, 12, 1225. [Google Scholar] [CrossRef] [PubMed]
- Stansbury, J.W.; Idacavage, M.J. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar]
- Nisja, G.A.; Cao, A.; Gao, C. Short Review of Nonplanar Fused Deposition Modeling Printing. Mater. Des. Process. Commun. 2021, 3, e221. [Google Scholar] [CrossRef]
- Awasthi, P.; Banerjee, S.S. Fused Deposition Modeling of Thermoplastic Elastomeric Materials: Challenges and Opportunities. Addit. Manuf. 2021, 46, 102177. [Google Scholar] [CrossRef]
- Samykano, M.; Selvamani, S.K.; Kadirgama, K.; Ngui, W.K.; Kanagaraj, G.; Sudhakar, K. Mechanical Property of FDM Printed ABS: Influence of Printing Parameters. Int. J. Adv. Manuf. Technol. 2019, 102, 2779–2796. [Google Scholar] [CrossRef]
- Meteyer, S.; Xu, X.; Perry, N.; Zhao, Y.F. Energy and Material Flow Analysis of Binder-Jetting Additive Manufacturing Processes. Procedia CIRP 2014, 15, 19–25. [Google Scholar] [CrossRef]
- Ziaee, M.; Tridas, E.M.; Crane, N.B. Binder-Jet Printing of Fine Stainless Steel Powder with Varied Final Density. JOM 2017, 69, 592–596. [Google Scholar] [CrossRef]
- Ziaee, M.; Crane, N.B. Binder Jetting: A Review of Process, Materials, and Methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Mirzababaei, S.; Pasebani, S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. J. Manuf. Mater. Process. 2019, 3, 82. [Google Scholar] [CrossRef]
- Polydoras, S.; Polydoras, S.N.; Sfantsikopoulos, M.M. On the Accuracy Performance of the Laminated Object Manufacturing Technology; National Technical University of Athens: Athens, Greece, 2001. [Google Scholar]
- Hu, G.; Cao, Z.; Hopkins, M.; Hayes, C.; Daly, M.; Zhou, H.; Devine, D.M. Optimizing the Hardness of SLA Printed Objects by Using the Neural Network and Genetic Algorithm. Procedia Manuf. 2019, 38, 117–124. [Google Scholar] [CrossRef]
- Devi, L.; Gaba, P.; Chopra, H. Tailormade Drug Delivery System: A Novel Trio Concept of 3DP+ Hydrogel+ SLA. J. Drug Deliv. Ther. 2019, 9, 861–866. [Google Scholar] [CrossRef]
- Ebers, L.S.; Arya, A.; Bowland, C.C.; Glasser, W.G.; Chmely, S.C.; Naskar, A.K.; Laborie, M.P. 3D Printing of Lignin: Challenges, Opportunities and Roads Onward. Biopolymers 2021, 112, e23431. [Google Scholar] [CrossRef]
- Miedzińska, D.; Gieleta, R.; Popławski, A. Experimental Study on Influence of Curing Time on Strength Behavior of Sla-Printed Samples Loaded with Different Strain Rates. Materials 2020, 13, 5825. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tse, Z. AirCure: A 2in1 System for 3D SLA Prints and Medical Applications Neuroimaging View Project MEMS Tracker and IoT View Project; University of Georgia: Athens, GA, USA, 2018. [Google Scholar]
- Petrosky, E.; Schmitz, A. Canal Design for SLA Printing of Closed Geometries; ASME International: New York, NY, USA, 2018. [Google Scholar]
- Vasilescu, M.D. Economic and Technogical Considerations on the 3D Printing Components with SLA Printing Process. Sci. Bull. Nav. Acad. 2020, 23, 1–8. [Google Scholar] [CrossRef]
- Yelamanchi, B.; Mummareddy, B.; Santiago, C.C.; Ojoawo, B.; Metsger, K.; Helfferich, B.; Zapka, J.; Sillani, F.; MacDonald, E.; Cortes, P. Mechanical and Fatigue Performance of Pressurized Vessels Fabricated with Multi Jet FusionTM for Automotive Applications. Addit. Manuf. 2021, 44, 102048. [Google Scholar] [CrossRef]
- Singh, S.; Ramakrishna, S.; Berto, F. 3D Printing of Polymer Composites: A Short Review. Mater. Des. Process. Commun. 2020, 2, e97. [Google Scholar] [CrossRef]
- Anitha, R.; Arunachalam, S.; Radhakrishnan, P. Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling. J. Mater. Process. Technol. 2001, 118, 385–388. [Google Scholar] [CrossRef]
- Garzon-Hernandez, S.; Garcia-Gonzalez, D.; Jérusalem, A.; Arias, A. Design of FDM 3D Printed Polymers: An Experimental-Modelling Methodology for the Prediction of Mechanical Properties. Mater. Des. 2020, 188, 108414. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Gache, C.C.L.; Cascolan, H.M.S.; Cancino, L.T.; Advincula, R.C. Post-Processing of 3D-Printed Polymers. Technologies 2021, 9, 61. [Google Scholar] [CrossRef]
- Bouzouita, A. Elaboration of Polylactide-Based Materials for Automotive Application: Study of Structure-Process-Properties Interactions; University of Valenciennes: Valenciennes, France, 2016. [Google Scholar]
- Rett, J.P.; Traore, Y.L.; Ho, E.A. Sustainable Materials for Fused Deposition Modeling 3D Printing Applications. Adv. Eng. Mater. 2021, 23, 2001472. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Yin, J.; Li, M.; Dai, G.; Zhou, H.; Ma, L.; Zheng, Y. 3D Printed Multi-Material Medical Phantoms for Needle-Tissue Interaction Modelling of Heterogeneous Structures. J. Bionic Eng. 2021, 18, 346–360. [Google Scholar] [CrossRef]
- Wang, K.; Wu, C.; Qian, Z.; Zhang, C.; Wang, B.; Vannan, M.A. Dual-Material 3D Printed Metamaterials with Tunable Mechanical Properties for Patient-Specific Tissue-Mimicking Phantoms. Addit. Manuf. 2016, 12, 31–37. [Google Scholar] [CrossRef]
- Bodkhe, S.; Vigo, L.; Zhu, S.; Testoni, O.; Aegerter, N.; Ermanni, P. 3D printing to integrate actuators into composites. Addit. Manuf. 2020, 35, 346–360. [Google Scholar] [CrossRef]
- Liu, F.; Li, T.; Jiang, X.; Jia, Z.; Xu, Z.; Wang, L. The Effect of Material Mixing on Interfacial Stiffness and Strength of Multi-Material Additive Manufacturing. Addit. Manuf. 2020, 36, 101502. [Google Scholar] [CrossRef]
- Espalin, D.; Alberto Ramirez, J.; Medina, F.; Wicker, R. Multi-Material, Multi-Technology FDM: Exploring Build Process Variations. Rapid Prototyp. J. 2014, 20, 236–244. [Google Scholar] [CrossRef]
- Scopus Analyze Search Results. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 6 July 2022).
- Nath, S.D.; Nilufar, S. An Overview of Additive Manufacturing of Polymers and Associated Composites. Polymers 2020, 12, 2719. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Scalera, F.; Gervaso, F.; Montagna, F.; Sannino, A.; Maffezzoli, A. One-Step Solvent-Free Process for the Fabrication of High Loaded PLA/HA Composite Filament for 3D Printing. J. Therm. Anal. Calorim. 2018, 134, 575–582. [Google Scholar] [CrossRef]
- Rigotti, D.; Dorigato, A.; Pegoretti, A. 3D Printable Thermoplastic Polyurethane Blends with Thermal Energy Storage/Release Capabilities. Mater. Today Commun. 2018, 15, 228–235. [Google Scholar] [CrossRef]
- Christ, J.F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Mater. Des. 2017, 131, 394–401. [Google Scholar] [CrossRef]
- Striemann, P.; Hülsbusch, D.; Niedermeier, M.; Walther, F. Optimization and Quality Evaluation of the Interlayer Bonding Performance of Additively Manufactured Polymer Structures. Polymers 2020, 12, 1166. [Google Scholar] [CrossRef]
- Chung, M.; Radacsi, N.; Robert, C.; McCarthy, E.D.; Callanan, A.; Conlisk, N.; Hoskins, P.R.; Koutsos, V. On the Optimization of Low-Cost FDM 3D Printers for Accurate Replication of Patient-Specific Abdominal Aortic Aneurysm Geometry. 3D Print. Med. 2018, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Fico, D.; Rizzo, D.; Casciaro, R.; Corcione, C.E. A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF): Focus on Sustainability and Recycled Materials. Polymers 2022, 14, 465. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.H.; Cain, T.M.; Fox, S.L.; Harvey, P.S. Influence of Infill Properties on Flexural Rigidity of 3D-Printed Structural Members. Virtual Phys. Prototyp. 2019, 14, 148–159. [Google Scholar] [CrossRef]
- Islam, M.S.; Prabhakar, P. Interlaminar Strengthening of Multidirectional Laminates Using Polymer Additive Manufacturing. Mater. Des. 2017, 133, 332–339. [Google Scholar] [CrossRef]
- Aliheidari, N.; Christ, J.; Tripuraneni, R.; Nadimpalli, S.; Ameli, A. Interlayer Adhesion and Fracture Resistance of Polymers Printed through Melt Extrusion Additive Manufacturing Process. Mater. Des. 2018, 156, 351–361. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Berto, F.; Ayatollahi, M.R.; Reinicke, T. Characterization of 3D-Printed PLA Parts with Different Raster Orientations and Printing Speeds. Sci. Rep. 2022, 12, 1016. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, W.; Mu, B.; Xu, H.; Hou, X.; Yang, Y. Hierarchical Crystallization Strategy Adaptive to 3-Dimentional Printing of Polylactide Matrix for Complete Stereo-Complexation. Int. J. Biol. Macromol. 2021, 193, 247–257. [Google Scholar] [CrossRef]
- Brancewicz-Steinmetz, E.; Sawicki, J.; Byczkowska, P.; Stampfl, J.; Recca, A. Materials the Influence of 3D Printing Parameters on Adhesion between Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU). Materials 2021, 14, 6464. [Google Scholar] [CrossRef]
- Bielęda, G.; Zwierzchowski, G.; Rosłan, K.; Adamus, A.; Malicki, J. Dosimetric Assessment of the Impact of Low-Cost Materials Used in Stereolithography in High-Dose-Rate Brachytherapy. J. Contemp. Brachyther. 2021, 13, 188–194. [Google Scholar] [CrossRef]
- Tezel, T.; Kovan, V.; Topal, E.S. Effects of the Printing Parameters on Short-Term Creep Behaviors of Three-Dimensional Printed Polymers. J. Appl. Polym. Sci. 2019, 136, 47564. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Liebscher, M.; Mechtcherine, V.; Tzounis, L. On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers. Polymers 2020, 12, 2924. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Lu, C.; Fu, J.; Huang, Y.; Zheng, Y. Interfacial Bonding during Multi-Material Fused Deposition Modeling (FDM) Process Due to Inter-Molecular Diffusion. Mater. Des. 2018, 150, 104–112. [Google Scholar] [CrossRef]
- Yadav, D.; Chhabra, D.; Kumar Garg, R.; Ahlawat, A.; Phogat, A. Optimization of FDM 3D Printing Process Parameters for Multi-Material Using Artificial Neural Network. Mater. Today Proc. 2020, 21, 1583–1591. [Google Scholar] [CrossRef]
- Lavecchia, F.; Guerra, M.G.; Galantucci, L.M. Chemical Vapor Treatment to Improve Surface Finish of 3D Printed Polylactic Acid (PLA) Parts Realized by Fused Filament Fabrication. Prog. Addit. Manuf. 2022, 7, 65–75. [Google Scholar] [CrossRef]
- Ribeiro, M.; Sousa Carneiro, O.; Ferreira da Silva, A. Interface Geometries in 3D Multi-Material Prints by Fused Filament Fabrication. Rapid Prototyp. J. 2019, 25, 107. [Google Scholar] [CrossRef]
- Tamburrino, F.; Graziosi, S.; Bordegoni, M. The Influence of Slicing Parameters on the Multi-Material Adhesion Mechanisms of FDM Printed Parts: An Exploratory Study. Virtual Phys. Prototyp. 2019, 14, 316–332. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Singh, T.; Batish, A. Multimaterial Printing and Characterization for Mechanical and Surface Properties of Functionally Graded Prototype. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 6741–6753. [Google Scholar] [CrossRef]
- Ahmed, S.W.; Hussain, G.; Altaf, K.; Ali, S.; Alkahtani, M.; Abidi, M.H.; Alzabidi, A. On the Effects of Process Parameters and Optimization of Interlaminate Bond Strength in 3D Printed ABS/CF-PLA Composite. Polymers 2020, 12, 2155. [Google Scholar] [CrossRef]
- Wojtyła, S.; Klama, P.; Baran, T. Is 3D Printing Safe? Analysis of the Thermal Treatment of Thermoplastics: ABS, PLA, PET, and Nylon. J. Occup. Environ. Hyg. 2017, 14, D80–D85. [Google Scholar] [CrossRef]
- Gümperlein, I.; Fischer, E.; Dietrich-Gümperlein, G.; Karrasch, S.; Nowak, D.; Jörres, R.A.; Schierl, R. Acute Health Effects of Desktop 3D Printing (Fused Deposition Modeling) Using Acrylonitrile Butadiene Styrene and Polylactic Acid Materials: An Experimental Exposure Study in Human Volunteers. Indoor Air 2018, 28, 611–623. [Google Scholar] [CrossRef]
- Ahmed, H.; Hussain, G.; Gohar, S.; Ali, A.; Alkahtani, M. Impact Toughness of Hybrid Carbon Fiber-PLA/ABS Laminar Composite Produced through Fused Filament Fabrication. Polymers 2021, 13, 3057. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.W.; Hussain, G.; Al-Ghamdi, K.A.; Altaf, K. Mechanical Properties of an Additive Manufactured CF-PLA/ABS Hybrid Composite Sheet. J. Thermoplast. Compos. Mater. 2021, 34, 1577–1596. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, R.; Farina, I.; Colangelo, F.; Feo, L.; Fraternali, F. Multi-Material Additive Manufacturing of Sustainable Innovative Materials and Structures. Polymers 2019, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Baca Lopez, D.M.; Ahmad, R. Tensile Mechanical Behaviour of Multi-Polymer Sandwich Structures via Fused Deposition Modelling. Polymers 2020, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ji, F.; Li, Z.; Tao, S. Preparation of Hydrophobic Surface on PLA and ABS by Fused Deposition Modeling. Polymers 2020, 12, 1539. [Google Scholar] [CrossRef]
- Lovinčić Milovanović, V.; Guyon, C.; Grčić, I.; Tatoulian, M.; Vrsaljko, D. Modification of Surface Hydrophobicity of PLA/PE and ABS/PE Polymer Blends by ICP Etching and CFx Coating. Materials 2020, 13, 5578. [Google Scholar] [CrossRef]
- Lopes, L.R.; Silva, A.F.; Carneiro, O.S. Multi-Material 3D Printing: The Relevance of Materials Affinity on the Boundary Interface Performance. Addit. Manuf. 2018, 23, 45–52. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Singh, M. Multi-Material 3D Printed PLA/PA6-TiO2 Composite Matrix: Rheological, Thermal, Tensile, Morphological and 4D Capabilities. Adv. Mater. Process. Technol. 2021, accepted. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Singh, M.; Singh, T.; Batish, A. Multi Material 3D Printing of PLA-PA6/TiO2 Polymeric Matrix: Flexural, Wear and Morphological Properties. J. Thermoplast. Compos. Mater. 2020, 2020, 089270572095319. [Google Scholar] [CrossRef]
- Frone, A.N.; Batalu, D.; Chiulan, I.; Oprea, M.; Gabor, A.R.; Nicolae, C.-A.; Raditoiu, V.; Trusca, R.; Panaitescu, D.M. Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printing. Nanomaterials 2019, 10, 51. [Google Scholar] [CrossRef]
- Prasong, W.; Ishigami, A.; Thumsorn, S.; Kurose, T.; Ito, H. Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing. Polymers 2021, 13, 740. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kumar, S.; Singh, R.; Kumar, R.; Kumar, V. On Shear Resistance of Almond Skin Reinforced PLA Composite Matrix-Based Scaffold Using Cancellous Screw. Adv. Mater. Process. Technol. 2021, accepted. [Google Scholar] [CrossRef]
- Harris, M.; Potgieter, J.; Mohsin, H.; Chen, J.Q.; Ray, S.; Arif, K.M. Partial Polymer Blend for Fused Filament Fabrication with High Thermal Stability. Polymers 2021, 13, 3353. [Google Scholar] [CrossRef] [PubMed]
- Coppola, B.; Cappetti, N.; di Maio, L.; Scarfato, P.; Incarnato, L. 3D Printing of PLA/Clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials 2018, 11, 1947. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Siraj, S.; Al-Marzouqi, A.H. 3D Printing PLA Waste to Produce Ceramic Based Particulate Reinforced Composite Using Abundant Silica-Sand: Mechanical Properties Characterization. Polymers 2020, 12, 2579. [Google Scholar] [CrossRef] [PubMed]
- Belarbi, Y.E.; Guessasma, S.; Belhabib, S.; Benmahiddine, F.; Hamami, A.E.A. Effect of Printing Parameters on Mechanical Behaviour of PLA-Flax Printed Structures by Fused Deposition Modelling. Materials 2021, 14, 5883. [Google Scholar] [CrossRef]
- Müller, M.; Šleger, V.; Kolář, V.; Hromasová, M.; Piš, D.; Mishra, R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers 2022, 14, 1301. [Google Scholar] [CrossRef]
- Guessasma; Belhabib; Nouri Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature. Polymers 2019, 11, 1778. [CrossRef]
- Krapež Tomec, D.; Straže, A.; Haider, A.; Kariž, M. Hygromorphic Response Dynamics of 3D-Printed Wood-PLA Composite Bilayer Actuators. Polymers 2021, 13, 3209. [Google Scholar] [CrossRef]
- Rosales, J.M.; Cejudo, C.; Verano, L.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J. Supercritical Impregnation of PLA Filaments with Mango Leaf Extract to Manufacture Functionalized Biomedical Devices by 3D Printing. Polymers 2021, 13, 2125. [Google Scholar] [CrossRef]
- Mei, Y.; He, C.; Gao, C.; Zhu, P.; Lu, G.; Li, H. 3D-Printed Degradable Anti-Tumor Scaffolds for Controllable Drug Delivery. Int. J. Bioprint. 2021, 7, 418. [Google Scholar] [CrossRef] [PubMed]
- Hassanajili, S.; Karami-Pour, A.; Oryan, A.; Talaei-Khozani, T. Preparation and Characterization of PLA/PCL/HA Composite Scaffolds Using Indirect 3D Printing for Bone Tissue Engineering. Mater. Sci. Eng. C 2019, 104, 109960. [Google Scholar] [CrossRef] [PubMed]
- Doustkhah, E.; Najafi Zare, R.; Yamauchi, Y.; Taheri-Kafrani, A.; Mohtasham, H.; Esmat, M.; Ide, Y.; Fukata, N.; Rostamnia, S.; Sadeghi, M.H.; et al. Template-Oriented Synthesis of Hydroxyapatite Nanoplates for 3D Bone Printing. J. Mater. Chem. B 2019, 7, 7228–7234. [Google Scholar] [CrossRef] [PubMed]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Saad, A.P.M.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. J. Funct. Biomater. 2021, 12, 38. [Google Scholar] [CrossRef]
- Szarlej, P.; Carayon, I.; Gnatowski, P.; Glinka, M.; Mroczyńska, M.; Brillowska-Dąbrowska, A.; Kucińska-Lipka, J. Composite Polyurethane-Polylactide (PUR/PLA) Flexible Filaments for 3D Fused Filament Fabrication (FFF) of Antibacterial Wound Dressings for Skin Regeneration. Materials 2021, 14, 6054. [Google Scholar] [CrossRef]
- Luchini, K.; Sloan, S.N.B.; Mauro, R.; Sargsyan, A.; Newman, A.; Persaud, P.; Hawkins, D.; Wolff, D.; Staudinger, J.; Creamer, B.A. Sterilization and Sanitizing of 3D-Printed Personal Protective Equipment Using Polypropylene and a Single Wall Design. 3D Print. Med. 2021, 7, 16. [Google Scholar] [CrossRef]
- Greene, A.F.; Vaidya, A.; Collet, C.; Wade, K.R.; Patel, M.; Gaugler, M.; West, M.; Petcu, M.; Parker, K. 3D-Printed Enzyme-Embedded Plastics. Biomacromolecules 2021, 22, 1999–2009. [Google Scholar] [CrossRef]
- Chen, Q.; Mangadlao, J.D.; Wallat, J.; de Leon, A.; Pokorski, J.K.; Advincula, R.C. 3D Printing Biocompatible Polyurethane/Poly(Lactic Acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Appl. Mater. Interfaces 2017, 9, 4015–4023. [Google Scholar] [CrossRef]
- Belaid, H.; Nagarajan, S.; Teyssier, C.; Barou, C.; Barés, J.; Balme, S.; Garay, H.; Huon, V.; Cornu, D.; Cavaillès, V.; et al. Development of New Biocompatible 3D Printed Graphene Oxide-Based Scaffolds. Mater. Sci. Eng. C 2020, 110, 110595. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, C.; Qiao, Y.; Gu, J.; Zhang, H.; Peijs, T.; Kong, J.; Zhang, G.; Shi, X. Tissue-Engineered Trachea Consisting of Electrospun Patterned Sc-PLA/GO-g-IL Fibrous Membranes with Antibacterial Property and 3D-Printed Skeletons with Elasticity. Biomacromolecules 2019, 20, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Tambrallimath, V.; Keshavamurthy, R.; Badari, A.; Ramesh, L.; Raj, G. Emergence of Additive Manufacturing in Global Scale during the Crisis of 2019-NCoV (Novel Corona Virus). Mater. Today Proc. 2021, 45, 6813–6817. [Google Scholar] [CrossRef] [PubMed]
- Vanaei, S.; Parizi, M.S.; Vanaei, S.; Salemizadehparizi, F.; Vanaei, H.R. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Eng. Regen. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Tümer, E.H.; Erbil, H.Y. Extrusion-Based 3D Printing Applications of PLA Composites: A Review. Coatings 2021, 11, 390. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Aziz, S.A.; Obaiys, S.J.; Zaid, M.H.M.; Matori, K.A.; Samikannu, K.; Aliyu, U.S. Biodegradable Poly (Lactic Acid)/Poly (Ethylene Glycol) Reinforced Multi-Walled Carbon Nanotube Nanocomposite Fabrication, Characterization, Properties, and Applications. Polymers 2020, 12, 427. [Google Scholar] [CrossRef]
- Bregman, A.; Michielssen, E.; Taub, A. Comparison of Experimental and Modeled EMI Shielding Properties of Periodic Porous XGNP/PLA Composites. Polymers 2019, 11, 1233. [Google Scholar] [CrossRef]
- Spinelli, G.; Lamberti, P.; Tucci, V.; Kotsilkova, R.; Ivanov, E.; Menseidov, D.; Naddeo, C.; Romano, V.; Guadagno, L.; Adami, R.; et al. Nanocarbon/Poly(Lactic) Acid for 3D Printing: Effect of Fillers Content on Electromagnetic and Thermal Properties. Materials 2019, 12, 2369. [Google Scholar] [CrossRef]
- Spinelli, G.; Kotsilkova, R.; Ivanov, E.; Petrova-Doycheva, I.; Menseidov, D.; Georgiev, V.; di Maio, R.; Silvestre, C. Effects of Filament Extrusion, 3D Printing and Hot-Pressing on Electrical and Tensile Properties of Poly(Lactic) Acid Composites Filled with Carbon Nanotubes and Graphene. Nanomaterials 2019, 10, 35. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, H.; Zhang, R.; Deng, K.; Li, Y.; Liu, Z.; Zhong, Q.; Kang, Y. Effect of Graphene/Spherical Graphite Ratio on the Properties of PLA/TPU Composites. Polymers 2022, 14, 2538. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Savvakis, K.; Maniadi, A.; Koudoumas, E. A Comprehensive Investigation of the Mechanical Behavior and the Dielectrics of Pure Polylactic Acid (PLA) and PLA with Graphene (GnP) in Fused Deposition Modeling (FDM). Int. J. Plast. Technol. 2019, 23, 195–206. [Google Scholar] [CrossRef]
- Stuardo, P.; Pizarro, F.; Rajo-Iglesias, E. 3D-Printed Sievenpiper Metasurface Using Conductive Filaments. Materials 2020, 13, 2614. [Google Scholar] [CrossRef]
- Maurizi, M.; Slavič, J.; Cianetti, F.; Jerman, M.; Valentinčič, J.; Lebar, A.; Boltežar, M. Dynamic Measurements Using FDM 3D-Printed Embedded Strain Sensors. Sensors 2019, 19, 2661. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.F.; Aziz, S.A.; Abbas, Z.; Obaiys, S.J.; Matori, K.A.; Zaid, M.H.M.; Raad, H.K.; Aliyu, U.S. Chemically Reduced Graphene Oxide-Reinforced Poly(Lactic Acid)/Poly(Ethylene Glycol) Nanocomposites: Preparation, Characterization, and Applications in Electromagnetic Interference Shielding. Polymers 2019, 11, 661. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Tadesse, Y. Fabrication of Polylactide/Carbon Nanopowder Filament Using Melt Extrusion and Filament Characterization for 3D Printing. Int. J. Nanosci. 2019, 18, 1850026. [Google Scholar] [CrossRef]
- Alsharari, M.; Chen, B.; Shu, W. 3D Printing of Highly Stretchable and Sensitive Strain Sensors Using Graphene Based Composites. In Proceedings of the Eurosensors 2018, Graz, Austria, 9–12 September 2018; p. 792. [Google Scholar]
- Kim, H.; Lee, S. Characterization of Electrical Heating Performance of CFDM 3D-Printed Graphene/Polylactic Acid (PLA) Horseshoe Pattern with Different 3D Printing Directions. Polymers 2020, 12, 2955. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.P.; Pumera, M. Impurities in Graphene/PLA 3D-Printing Filaments Dramatically Influence the Electrochemical Properties of the Devices. Chem. Commun. 2019, 55, 8374–8377. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Ahuja, I.P.S. Investigations of Mechanical, Thermal and Morphological Properties of FDM Fabricated Parts for Friction Welding Applications. Meas. J. Int. Meas. Confed. 2018, 120, 11–20. [Google Scholar] [CrossRef]
- Spinelli, G.; Kotsilkova, R.; Ivanov, E.; Georgiev, V.; Ivanova, R.; Naddeo, C.; Romano, V. Dielectric Spectroscopy and Thermal Properties of Poly(Lactic) Acid Reinforced with Carbon-Based Particles: Experimental Study and Design Theory. Polymers 2020, 12, 2414. [Google Scholar] [CrossRef]
- El Magri, A.; El Mabrouk, K.; Vaudreuil, S.; Touhami, M.E. Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling. J. Thermoplast. Compos. Mater. 2021, 34, 581–595. [Google Scholar] [CrossRef]
- El Magri, A.; Vanaei, S.; Shirinbayan, M.; Vaudreuil, S.; Tcharkhtchi, A. An Investigation to Study the Effect of Process Parameters on the Strength and Fatigue Behavior of 3D-Printed PLA-Graphene. Polymers 2021, 13, 3218. [Google Scholar] [CrossRef]
- Patel, R.; Desai, C.; Kushwah, S.; Mangrola, M.H. A review article on FDM process parameters in 3D printing for composite materials. Mater. Today Proc. 2022, 60, 2162–2166. [Google Scholar] [CrossRef]
- Khan, S.; Joshi, K.; Deshmukh, S. A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. Mater. Today Proc. 2022, 50, 2119–2127. [Google Scholar] [CrossRef]
- Multi-Material 3D Printing: Printing Two or More Materials at the Same Time. Available online: https://www.bcn3d.com/multi-material-3d-printing-benefits-and-how-its-done/ (accessed on 2 July 2022).
- Kelly, R. Multi-Material 3D Printer: Types & Printing Guide. Available online: https://all3dp.com/2/multi-material-3d-printing-an-overview/ (accessed on 2 July 2022).
- Krause, T. 3D Printing with Several Filaments Extremely Long Service Life and Outstanding Resilience Due to Combined Materials. Guide. Available online: Https://Www.Igus.Eu/Info/Multiple-Component-3d-Printing (accessed on 2 July 2022).
- Multi-Material 3D Printing. Available online: https://www.instructables.com/multi-material-3d-printing/ (accessed on 4 July 2022).
- Stevenson, K. 3Dfeedy: Another Way to Perform Multi-Material 3D Printing. Available online: https://www.fabbaloo.com/news/3dfeedy-another-way-to-perform-multi-material-3d-printing (accessed on 2 July 2022).
- Multi-Material Printing with Your 3D Printer: Introducing Palette+. Available online: https://www.mosaicmfg.com/blogs/news/multi-material-printing-with-palette-plus (accessed on 2 July 2022).
- Automatic Color Changer. Available online: https://www.3dchameleon.com/ (accessed on 5 July 2022).
- Thomas, D. Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective. Int. J. Adv. Manuf. Technol. 2016, 85, 1857–1876. [Google Scholar] [CrossRef]
- Wohlers Report 2022 Finds Strong Industry-Wide Growth. Available online: https://wohlersassociates.com/press87.html (accessed on 27 July 2022).
- Popov, V.V.; Grilli, M.L.; Koptyug, A.; Jaworska, L.; Katz-Demyanetz, A.; Klobčar, D.; Balos, S.; Postolnyi, B.O.; Goel, S. Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review. Materials 2021, 14, 909. [Google Scholar] [CrossRef]
- Lamm, M.E.; Wang, L.; Kishore, V.; Tekinalp, H.; Kunc, V.; Wang, J.; Gardner, D.J.; Ozcan, S. Material Extrusion Additive Manufacturing of Wood and Lignocellulosic Filled Composites. Polymers 2020, 12, 2115. [Google Scholar] [CrossRef]
- Unruh, G. Circular Economy, 3D Printing, and the Biosphere Rules. Calif. Manag. Rev. 2018, 60, 95–111. [Google Scholar] [CrossRef]
- Zhu, C.; Li, T.; Mohideen, M.M.; Hu, P.; Gupta, R.; Ramakrishna, S.; Liu, Y. Realization of Circular Economy of 3D Printed Plastics: A Review. Polymers 2021, 13, 744. [Google Scholar] [CrossRef]
- Moreno, E.; Beltrán, F.R.; Arrieta, M.P.; Gaspar, G.; Muneta, L.M.; Carrasco-Gallego, R.; Yáñez, S.; Hidalgo-Carvajal, D.; de la Orden, M.U.; Martíne Urreaga, J. Technical Evaluation of Mechanical Recycling of PLA 3D Printing Wastes. Proceedings 2021, 69, 19. [Google Scholar] [CrossRef]
- Garmulewicz, A.; Holweg, M.; Veldhuis, H.; Yang, A. Disruptive Technology as an Enabler of the Circular Economy: What Potential Does 3D Printing Hold? Calif. Manag. Rev. 2018, 60, 112–132. [Google Scholar] [CrossRef]
- Emila Brancewicz-Steinmetz, Original Composition/Layout Created in Canva. Available online: https://www.canva.com/ (accessed on 1 June 2022).
Material | Sample Geometry | Research | Variable Parameters | Best Results |
---|---|---|---|---|
PLA/TPU [84] | Dog bone sample | Ultimate stress: 64–68 MPa Young’s Modulus 1040–1075 MPa | Mechanical interlocking systems: T-shape, U-shape, and dovetail shape | T-shape is the best locking mechanism for the TPU-PLA combination |
PLA/TPU [77] | Cylindrical | Shear strength 0.63 MPa | Order of printing layers Surface pattern (linear, concentric) | TPU-linear pattern 0° and PLA-linear pattern 45° |
PLA-TPU, CPE-PLA [85] | Rectangular prism | Elongation—the force of adhesion Peak stress from 0.28 MPa to 1.32 MPa | Mechanical Interlocking Order of printing layers Surface expansion | PLA-TPU + Mechanical Interlocking |
PLA, PLA/PVC, PLA/wood powder, PLA/magnetite (Fe3O4) [86] | Dog bone sample | Tensile strength 41.65 MPa | Infill density Infill angle Infill speed | Infill density 100%, Infill angle of 45° and Infill speed of 90 mm/s |
ABS, CF-PLA [87] | Square laminar sheets | Uniaxial tensile load Bond strength 45 MPa | Printing speed Infill density Layer height Layer thickness Ratio | The printing speed of 50.54 mm/s, Infill density of 79.82%, Layer height of 0.15, the Layer thickness ratio of 0.49 |
ABS, CF-PLA [90,91] | Impact testing sample Dog bone sample | Impact strength from 7672.9 to 23,465.6 kJ/m2 Elastic modulus = 2204.45 MPa; Ultimate strength = 51.34 MPa Elongation = 9% | Using external walls in mesh structures Using ABS for strengthening CF-PLA | Higher impact strength (280 to 365%) compared to CF-PLA samples Printing parameters: speed: 20 mm/s, infill density: 67.838%, layer height: 0.23 mm and clad ratio: 0.25 |
ABS, PLA, HIPS [93] | Dog bone sample | Tensile strength: 44.4 MPa Young’s modulus 1364.25 MPa | Order of printing layers from different materials | Best configuration PLA -ABS-PLA |
PLA+ PA6-TiO2 [97] | Dog bone sample | Strength 61 MPa | Printing speed Layer combinations Infill pattern | Printing speeds 90 mm/s rectilinear fill pattern 5 PLA layers and five composite layers were the best combinations |
PLA/PBAT/PBS [100] | Dog bone sample | Tensile strength 50.4 MPa Young’s Modulus 1 GPa | Different material proportions in the composite | The best roughness and dimensional accuracy parameters were obtained for the proportion 70/10/20/10 The addition of PBS and nano talc increased the PLA crystallinity: Storage modulus, Tensile and flexural Strength Anisotropic characteristics |
Material | Methodology | Result |
---|---|---|
PLA with the addition of almond peel powder [101] | Shear resistance using cancellous screw | Shear strength at peak (23.02 MPa) Maximum shear strength at break (22.90 MPa) for the honeycomb infill pattern at 100% screw insertion and 30° rake angle |
PLA with polypropylene [102] | Overwhelmed physical interlocking and minimum chemical grafting | High structural stability (mechanical and intermolecular) to thermal degradation, compared to pure PLA |
PLA with silicon nanocomposite (clay nanocomposite) [103] | Changing the printing temperature, verifying sample transparency | Increase in thermal stability and modulus of elasticity The samples become more transparent as the printing temperature increases |
PLA with silica (silica-silicon dioxide SiO2) [104] | Addition of 10% of silica by weight | Increase in tensile strength up to 121 MPa |
PLA with flax fibers [105] | Adding flax, testing the porosity of the fiber | Material gaps and weakening of material bonds |
PLA with wood [107] | Examination of microstructure and mechanical properties Shape changes under the influence of climatic conditions [106] | Optimum printing temperature—220 °C The higher the wood content, the greater the observed shape change |
PLA with mango extract [109] | Examination of bioactive properties | 3D printing polymers can be made bioactive directly using natural extracts |
PLA with methotrexate [110] | Examination of the release time of the drug | Print releases the active substance at the site of implantation for more than 30 days |
PLA with PCL polycaprolactone and HA hydroxyapatite [111] | Strength test depending on the hydroxyapatite content Assessment of cytotoxicity and biocompatibility | Compressive strength 82.72 MPa, tensile strength 52.05 MPa with a hydroxyapatite content of 15% Cells are viable and can increase on frames, the most favorable weight ratio of PLA/PCL—70/30 |
PLA with TPU and an antibiotic [115] | Mechanical, structural, microscopic, and degradation analysis | TPU/PLA ratio—12:1 The antibiotic—amikacin is stable during extrusion at elevated temperatures |
PLA with TPU [116] | Sterilization test | Possibility of using PLA with TPU for personal protective equipment—the ability to re-sterilize |
PLA with TPU and graphene oxide GO [118] | Influence of graphene oxide on mechanical and biocompatible properties of prints | The addition of GO improves the mechanical properties by 167% for the compression modulus and 75.5% for the tensile modulus PLA/GO frames are biocompatible; they promote cell proliferation and mineralization |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brancewicz-Steinmetz, E.; Sawicki, J. Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing. Materials 2022, 15, 5563. https://doi.org/10.3390/ma15165563
Brancewicz-Steinmetz E, Sawicki J. Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing. Materials. 2022; 15(16):5563. https://doi.org/10.3390/ma15165563
Chicago/Turabian StyleBrancewicz-Steinmetz, Emila, and Jacek Sawicki. 2022. "Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing" Materials 15, no. 16: 5563. https://doi.org/10.3390/ma15165563
APA StyleBrancewicz-Steinmetz, E., & Sawicki, J. (2022). Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing. Materials, 15(16), 5563. https://doi.org/10.3390/ma15165563