Equilibrium, Kinetic, and Thermodynamic Studies on Adsorption of Rhodamine B from Aqueous Solutions Using Oxidized Mesoporous Carbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Mesoporous Carbon Synthesis
2.1.2. Sample Functionalization
2.2. Analytical Procedures
2.3. Adsorption of Rhodamine B
2.4. Adsorption Modeling
2.5. Thermodynamic Study
2.6. Adsorption Isotherms
3. Results and Discussion
3.1. Characterization of Adsorbents
3.2. Adsorption Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.C.; Zhang, B.; Mei, D.D.; Zhang, H.Q.; Liu, J.D. Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination 2011, 268, 111–116. [Google Scholar] [CrossRef]
- Liang, Z.J.; Zhao, Z.W.; Sun, T.Y.; Shi, W.X.; Cui, F.Y. Enhanced adsorption of the cationic dyes in the spherical CuO/meso-silica nano composite and impact of solution chemistry. J. Colloid Interf. Sci. 2017, 485, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Hao, O.J.; Kim, H.; Chiang, P.C. Decolorization of wastewater. Crit. Rev. Environ. Sci. Technol. 2000, 30, 449–505. [Google Scholar] [CrossRef]
- Bulai, I.M.; Venturino, E. Biodegradation of organic pollutants in a water body. J. Math. Chem. 2016, 54, 1387–1403. [Google Scholar] [CrossRef]
- Wang, S.; Yang, B.; Liu, Y. Synthesis of a hierarchical SnS2 nanostructure for efficient adsorption of Rhodamine B dye. J. Colloid Interf. Sci. 2017, 507, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, Y.; Chen, W.; Shi, J.; Zhang, N.; Wang, X.; Li, Z.; Gao, L.; Zhang, Y. Modified bentonite adsorption of organic pollutants of dye wastewater. Mater. Chem. Phys. 2017, 202, 266–276. [Google Scholar] [CrossRef]
- Raman, C.D.; Kanmani, S. Textile dye degradation using nano zero valent iron: A review. J. Environ. Manag. 2016, 177, 341–355. [Google Scholar] [CrossRef]
- Patil, S.P.; Bethi, B.; Sonawane, G.H.; Shrivastava, V.S.; Sonawane, S. Efficient adsorption and photocatalytic degradation of Rhodamine B dye over Bi2O3-bentonite nanocomposites: A kinetic study. J. Ind. Eng. Chem. 2016, 34, 356–363. [Google Scholar] [CrossRef]
- Ptaszkowska-Koniarz, M.; Goscianska, J.; Pietrzak, R. Adsorption of dyes on the surface of polymer nanocomposites modified with methylamine and copper(II) chloride. J. Colloid Interf. Sci. 2017, 504, 549–560. [Google Scholar] [CrossRef]
- Li, S.; Jia, Z.; Li, Z.; Li, Y.; Zhu, R. Synthesis and characterization of mesoporous carbon nanofibers and its adsorption for dye in wastewater. Adv. Powder Technol. 2016, 27, 591–598. [Google Scholar] [CrossRef]
- Firmino, P.I.M.; Da Silva, M.E.R.; Cervantes, F.J.; Dos Santos, A.B. Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresour. Technol. 2010, 101, 7773–7779. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Burch, R. Mesoporous materials for water treatment processes. Water Res. 1999, 33, 3689–3694. [Google Scholar] [CrossRef]
- Arshadi, M.; Mousavinia, F.; Amiri, M.J.; Faraji, A.R. Adsorption of methyl orange and salicylic acid on a nano-transition metal composite: Kinetics, thermodynamic and electrochemical studies. J. Colloid Interf. Sci. 2016, 483, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Errais, E.; Duplay, J.; Darragi, F. Textile dye removal by natural clay-case study of Fouchana Tunisian Clay. Environ. Technol. 2010, 31, 373–380. [Google Scholar] [CrossRef]
- Marcucci, M.; Ciardelli, G.; Matteucci, A.; Ranieri, L.; Russo, M. Experimental campaigns on textile wastewater for reuse by means of different membrane processes. Desalination 2002, 149, 137–143. [Google Scholar] [CrossRef]
- Alzahrani, S.; Mohammad, A.W. Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Process Eng. 2014, 4, 107–133. [Google Scholar] [CrossRef]
- Damodar, R.A.; You, S.; Ou, S. Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Sep. Purif. Technol. 2010, 76, 64–71. [Google Scholar] [CrossRef]
- Ou, W.; Zhang, G.; Yuan, X.; Su, P. Experimental study on coupling photocatalytic oxidation process and membrane separation for the reuse of dye wastewater. J. Water Process Eng. 2015, 6, 120–128. [Google Scholar] [CrossRef]
- Kanagaraj, J.; Senthilvelan, T.; Panda, R.C. Degradation of azo dyes by laccase: Biological method to reduce pollution load in dye wastewater. Clean. Technol. Environ. Policy 2015, 17, 1443–1456. [Google Scholar] [CrossRef]
- Kannan, C.; Sundaram, T.; Palvannan, T. Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution. J. Hazard. Mater. 2008, 157, 137–145. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhong, H.; Wang, S.; Xue, J.R.; Zhang, Z.Y. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J. Ind. Eng. Chem. 2015, 23, 344–352. [Google Scholar] [CrossRef]
- Dong, K.; Qiu, F.X.; Guo, X.R.; Xu, J.C.; Yang, D.Y.; He, K.C. Polyurethane-attapulgite porous material: Preparation, characterization, and application for dye adsorption. J. Appl. Polym. Sci. 2013, 129, 1697–1706. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A.; Pietrzak, R. In vitro release of L-phenylalanine from ordered mesoporous materials. Micropor. Mesopor. Mater. 2013, 177, 32–36. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Marczewski, A.W.; Winter, S.; Sternik, D. Studies of adsorption equilibria and kinetics in the systems: Aqueous solution of dyes–mesoporous carbons. Appl. Surf. Sci. 2010, 256, 5164–5170. [Google Scholar] [CrossRef]
- Goscianska, J.; Ptaszkowska, M.; Pietrzak, R. Equilibrium and kinetic studies of chromotrope 2R adsorption onto ordered mesoporous carbons modified with lanthanum. Chem. Eng. J. 2015, 270, 140–149. [Google Scholar] [CrossRef]
- Goscianska, J.; Marciniak, M.; Pietrzak, R. Ordered mesoporous carbons modified with cerium as effective adsorbents for azo dyes removal. Sep. Purif. Technol. 2015, 154, 236–245. [Google Scholar] [CrossRef]
- Bazula, P.A.; Lu, A.H.; Nitz, J.T.; Schüth, F. Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Micropor. Mesopor. Mater. 2008, 108, 266–275. [Google Scholar] [CrossRef]
- Liu, F.; Guo, Z.; Ling, H.; Huang, Z.; Tang, D. Effect of pore structure on the adsorption of aqueous dyes to ordered mesoporous carbons. Micropor. Mesopor. Mater. 2016, 227, 104–111. [Google Scholar] [CrossRef]
- Asouhidou, D.D.; Triantafyllidis, K.S.; Lazaridis, N.K.; Matis, K.A.; Kim, S.S.; Pinnavaia, T.J. Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Micropor. Mesopor. Mater. 2009, 117, 257–267. [Google Scholar] [CrossRef]
- Peng, X.; Hu, X.; Fu, D.; Lam, F.L.Y. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon. Appl. Surf. Sci. 2016, 294, 71–80. [Google Scholar] [CrossRef]
- Cai, T.; Liu, Y.; Wang, L.; Dong, W.; Chen, H.; Zeng, W.; Xia, X.; Zeng, G. Activation of persulfate by photoexcited dye for antibiotic degradation: Radical and nonradical reactions. Chem. Eng. J. 2019, 375, 122070. [Google Scholar] [CrossRef]
- Sulistina, D.R.; Martini, S. The effect of Rhodamine B on the cerebellum and brainstem tissue of Rattus norvegicus. J. Public Health Res. 2020, 9, 1812. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H.; Ren, X. Synthesis and characterization of magnetic metal–organic framework for the adsorptive removal of rhodamine B from aqueous solution. J. Ind. Eng. Chem. 2016, 34, 278–285. [Google Scholar] [CrossRef]
- Deng, J.; Chen, Y.J.; Lu, Y.A.; Ma, X.Y.; Feng, S.F.; Gao, N.; Li, N. Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in Fenton-like oxidation of rhodamine B. Environ. Sci. Pollut. Res. 2017, 24, 14396–14408. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.E.; Nasrollahpour, A. Competitive adsorption and photodegradation of Methyl orange and Rhodamine B by TiO2modified mesoporous carbon photo-catalyst on UV irradiation. Mater. Technol. 2017, 32, 716–723. [Google Scholar] [CrossRef]
- Tripathi, N.K. Porous carbon spheres: Recent developments and applications. AIMS Mater. Sci. 2018, 5, 1016–1052. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered hydrothermally stable mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef]
- Joo, H.; Choi, J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169–172. [Google Scholar] [CrossRef]
- Boehm, H.P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994, 32, 759–769. [Google Scholar] [CrossRef]
- Olejnik, A.; Gosicianska, J. On the importance of physicochemical parameters of copper and aminosilane functionalized mesoporous silica for hydroxychloroquine release. Mater. Sci. Eng. C 2021, 130, 112438. [Google Scholar] [CrossRef] [PubMed]
- Nashine, A.L.; Tembhurkar, A.R. Equilibrium, kinetic and thermodynamic studies for adsorption of As(III) on coconut (Cocos nucifera L.) fiber. J. Environ. Chem. Eng. 2016, 4, 3267–3273. [Google Scholar] [CrossRef]
- Konggidinata, M.I.; Chao, B.; Lian, Q.; Subramaniam, R.; Zappi, M.; Gang, D.D. Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto Ordered Mesoporous Carbon (OMC). J. Hazard. Mater. 2017, 336, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Dursun, A.Y.; Kalayci, C.S. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. J. Hazard. Mater. 2005, 123, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The constitutional and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H. Überdie Adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Wu, Z.; Webley, P.A.; Zhao, D. Comprehensive Study of Pore Evolution, Mesostructural Stability, and Simultaneous Surface Functionalization of Ordered Mesoporous Carbon (FDU-15) by Wet Oxidation as a Promising Adsorbent. Langmuir 2010, 26, 10277–10286. [Google Scholar] [CrossRef]
- Cohn, A.P.; Erwin, W.R.; Share, K.; Oakes, L.; Westover, A.S.; Carter, R.E.; Bardhan, R.; Pint, C.L. All Silicon Electrode Photocapacitor for Integrated Energy Storage and Conversion. Nano Lett. 2015, 15, 2727–2731. [Google Scholar] [CrossRef]
- Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem. Eng. J. 2008, 140, 32–42. [Google Scholar] [CrossRef]
- Li, Y.; Dua, Q.; Liua, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 2013, 91, 361–368. [Google Scholar] [CrossRef]
- Galán, J.; Rodríguez, A.; Gómez, J.M.; Allen, S.J.; Walker, G.M. Reactive dye adsorption onto a novel mesoporous carbon. Chem. Eng. J. 2013, 219, 62–68. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A.; Nowak, I. APTES-functionalized mesoporous silica as a vehicle for antipyrine–adsorption and release studies. Colloid Surf. A 2017, 533, 187–196. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K.; Phan, C. Synthesis and Characterisation of Novel-Activated Carbon from Waste Biomass Pine Cone and Its Applicationin the Removal of Congo Red Dye from Aqueous Solution by Adsorption. Water Air Soil Pollut. 2014, 225, 1818. [Google Scholar] [CrossRef]
- Alswieleh, A.M. Efficient Removal of Dyes from Aqueous Solution by Adsorption on L-Arginine-Modified Mesoporous Silica Nanoparticles. Processes 2022, 10, 1079. [Google Scholar] [CrossRef]
- Liu, K.; Li, H.; Wang, Y.; Gou, X.; Duan, Y. Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Colloid Surf. A Physicochem. Eng. Asp. 2015, 477, 35–41. [Google Scholar] [CrossRef]
- Hou, M.F.; Ma, C.X.; Zhang, W.D.; Tang, X.Y.; Fan, Y.N.; Wan, H.F. Removal of rhodamine B using iron-pillared bentonite. J. Hazard. Mater. 2011, 186, 1118–1123. [Google Scholar] [CrossRef]
- Kadirvelu, K.; Karthika, C.; Vennilamani, N.; Pattabhi, S. Activated carbon from industrial solid waste as an adsorbent for the removal of rhodamine-B from aqueous solution: Kinetic and equilibrium studies. Chemosphere 2005, 60, 1009–1017. [Google Scholar] [CrossRef]
- Khan, T.A.; Dahiya, S.; Ali, I. Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 2012, 69, 58–66. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Huang, H.; Cao, W.; Li, T. Removal of rhodamine B and Cr(VI) from aqueous solutions by a polyoxometalate adsorbent. Chem. Eng. Res. Des. 2015, 100, 192–202. [Google Scholar] [CrossRef]
- Annadurai, G.; Juang, R.S.; Lee, D.J. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 2002, 92, 263–274. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, H.; Qu, F. Synthesis of ferromagnetic ordered mesoporous carbons for bulky dye molecules adsorption. Chem. Eng. J. 2012, 193–194, 169–177. [Google Scholar] [CrossRef]
- Yang, C.; Cheng, J.; Chen, Y.; Hu, Y. Enhanced adsorption performance of MoS2 nanosheet-coated MIL-101 hybrids for the removal of aqueous rhodamine B. J. Colloid Interface Sci. 2017, 504, 39–47. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | SBET (m2/g) | Vt (cm3/g) | Smicro (m2/g) | Average Pore Diameter (nm) |
---|---|---|---|---|
CSBA-15 | 1203 | 1.32 | 685 | 4.45 |
CSBA-15-0.5-70 | 789 | 1.12 | 147 | 5.66 |
CSBA-15-5-70 | 685 | 0.89 | 106 | 5.18 |
CSBA-15-0.5-100 | 837 | 1.04 | 204 | 4.91 |
CSBA-15-5-100 | 854 | 1.10 | 198 | 5.18 |
Adsorbent | Acidic Groups (mmol/g) | Basic Groups (mmol/g) | Total Content of Acidic and Basic Groups (mmol/g) |
---|---|---|---|
CSBA-15 | 1.09 ± 0.01 | 0.74 ± 0.01 | 1.83 |
CSBA-15-0.5-70 | 2.14 ± 0.02 | 0.13 ± 0.01 | 2.27 |
CSBA-15-5-70 | 3.24 ± 0.02 | 0.00 ± 0.00 | 3.24 |
CSBA-15-0.5-100 | 3.45 ± 0.02 | 0.13 ± 0.01 | 3.58 |
CSBA-15-5-100 | 4.88 ± 0.03 | 0.00 ± 0.00 | 4.88 |
Adsorbent | qe (mg/g) | PFO Model | PSO Model | ||||
---|---|---|---|---|---|---|---|
qe[cal] (mg/g) | k1 (min−1) | R2 | qe[cal] (mg/g) | k2 (g/mg min) | R2 | ||
CSBA-15 | 159.41 ± 3.19 | 9.94 | 0.019 | 0.9391 | 161.29 | 0.003 | 0.9999 |
CSBA15-0.5-70 | 171.29 ± 3.43 | 7.35 | 0.018 | 0.9265 | 172.41 | 0.004 | 0.9999 |
CSBA-15-5-70 | 174.46 ± 3.49 | 11.93 | 0.022 | 0.9253 | 175.44 | 0.003 | 0.9999 |
CSBA-15-0.5-100 | 174.90 ± 3.49 | 11.44 | 0.026 | 0.9865 | 175.45 | 0.003 | 0.9999 |
CSBA-15-5-100 | 180.71 ± 3.61 | 10.72 | 0.023 | 0.9687 | 181.81 | 0.003 | 0.9999 |
Adsorbent | Temperature (°C) | ∆G0 (kJ·mol−1) | ∆H0 (kJ·mol−1) | ∆S0 (J·mol−1·K−1) |
---|---|---|---|---|
CSBA-15 | 25 | −16.41 | 31.20 | 159.71 |
45 | −19.53 | |||
60 | −22.01 | |||
CSBA-15-0.5-70 | 25 | −19.51 | 23.96 | 145.66 |
45 | −22.18 | |||
60 | −24.51 | |||
CSBA-15-5-70 | 25 | −22.27 | 22.44 | 149.90 |
45 | −25.14 | |||
60 | −27.53 | |||
CSBA-15-0.5-100 | 25 | −19.12 | 43.69 | 210.76 |
45 | −23.24 | |||
60 | −26.51 | |||
CSBA-15-5-100 | 25 | −21.66 | 47.17 | 230.88 |
45 | −26.19 | |||
60 | −29.73 |
Material | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF (mg/g (L/mg)1/n) | 1/n | R2 | |
CSBA-15 | 196.07 | 0.369 | 0.9999 | 102.48 | 0.1373 | 0.8564 |
CSBA15-0.5-70 | 250.00 | 0.727 | 0.9998 | 119.92 | 0.1701 | 0.7993 |
CSBA-15-5-70 | 270.27 | 0.787 | 0.9998 | 127.98 | 0.1783 | 0.8009 |
CSBA-15-0.5-100 | 303.03 | 0.493 | 0.9988 | 141.83 | 0.1717 | 0.8611 |
CSBA-15-5-100 | 322.58 | 0.574 | 0.9987 | 153.34 | 0.1780 | 0.8598 |
Material | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF (mg/g (L/mg)1/n) | 1/n | R2 | |
CSBA-15 | 200.64 | 0.179 | 0.9999 | 122.13 | 0.0949 | 0.8983 |
CSBA15-0.5-70 | 248.73 | 0.566 | 0.9986 | 171.94 | 0.0793 | 0.8053 |
CSBA-15-5-70 | 268.28 | 0.660 | 0.9995 | 208.07 | 0.0530 | 0.9357 |
CSBA-15-0.5-100 | 296.66 | 0.454 | 0.9942 | 197.63 | 0.0860 | 0.9953 |
CSBA-15-5-100 | 319.83 | 0.505 | 0.9950 | 212.12 | 0.0897 | 0.9922 |
Adsorbent | Sorption Capacity (mg/g) | References |
---|---|---|
oxidized mesoporous carbon | 248–325 | This study |
hierarchical SnS2 nanostructure | 200 | [5] |
TA-G | 201 | [55] |
iron-pillared bentonite | 99 | [56] |
sago waste activated carbon | 47 | [57] |
kaolinite | 46 | [58] |
[Ni(bipy)2]2(HPW12O40) | 23 | [59] |
orange peel | 14 | [60] |
magnetic mesoporous carbon materials | 342–400 | [61] |
MoS2/MIL-101 | 345 | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marciniak, M.; Goscianska, J.; Norman, M.; Jesionowski, T.; Bazan-Wozniak, A.; Pietrzak, R. Equilibrium, Kinetic, and Thermodynamic Studies on Adsorption of Rhodamine B from Aqueous Solutions Using Oxidized Mesoporous Carbons. Materials 2022, 15, 5573. https://doi.org/10.3390/ma15165573
Marciniak M, Goscianska J, Norman M, Jesionowski T, Bazan-Wozniak A, Pietrzak R. Equilibrium, Kinetic, and Thermodynamic Studies on Adsorption of Rhodamine B from Aqueous Solutions Using Oxidized Mesoporous Carbons. Materials. 2022; 15(16):5573. https://doi.org/10.3390/ma15165573
Chicago/Turabian StyleMarciniak, Michal, Joanna Goscianska, Małgorzata Norman, Teofil Jesionowski, Aleksandra Bazan-Wozniak, and Robert Pietrzak. 2022. "Equilibrium, Kinetic, and Thermodynamic Studies on Adsorption of Rhodamine B from Aqueous Solutions Using Oxidized Mesoporous Carbons" Materials 15, no. 16: 5573. https://doi.org/10.3390/ma15165573
APA StyleMarciniak, M., Goscianska, J., Norman, M., Jesionowski, T., Bazan-Wozniak, A., & Pietrzak, R. (2022). Equilibrium, Kinetic, and Thermodynamic Studies on Adsorption of Rhodamine B from Aqueous Solutions Using Oxidized Mesoporous Carbons. Materials, 15(16), 5573. https://doi.org/10.3390/ma15165573