Incorporation of Ornamental Stone Waste in the Manufacturing of Red Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Used
2.2. Characterization of Raw Materials
2.3. Preparation of Formulations for Extrusion
2.4. Processing of Specimens Made by Extrusion
2.5. Physical and Mechanical Tests of Specimens
3. Results and Discussion
3.1. Chemical Characterization
3.2. Mineral Characterization
3.3. Waste Granulometry
3.4. Plasticity
3.5. Density
3.6. Linear Shrinkage
3.7. Absorption
3.8. Porosity
3.9. Flexural Strength
3.10. Leaching Test
3.11. Solubilization Test
4. Conclusions
- Granite waste has characteristics suitable for use by the red ceramic segment, such as fine particle size.
- The waste improves the workability/plasticity of the clay, enabling adjustment in the ceramic shaping step.
- The waste has significant percentages of alkaline and alkaline earth oxides that act as fluxes during the firing stage.
- There was an increase in the dry density of the masses incorporated with granite waste, thereby improving particle packing. However, the dry density of the compositions with granite waste did not increase significantly as the percentage of waste incorporated increased. However, this increase is beneficial in terms of reducing shrinkage and favoring particle consolidation during firing.
- There was an increase in the mechanical strength of the ceramic material with the use of waste. Granite waste increases strength due to its melting action and clay influence.
- The results indicated that the use of ornamental stone waste in the production of red ceramics is feasible and its use should be adjusted for the firing temperature of the pieces. It is an environmentally sound alternative, with the ability to generate a reduction in the order of millions of t of waste that otherwise represents a serious environmental problem.
- Finally, the main objective of this work was to obtain a technical, economic and environmentally viable solution for the waste. The next steps involve the regulation of this waste, with several possibilities for its use in red ceramic. The dissemination, standardization and recommendations for use will transform this waste into a product with equal conditions of use in relation to conventional materials, high added value and the potential for technological innovation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ABIROCHAS—Associação Brasileira da Indústria de Rochas Ornamentais. Balanço das Exportações e Importações Brasileiras de Rochas Ornamentais em 2020. Informe 01/2021. Available online: http://www.abirochas.com.br/abirochas-home/ (accessed on 15 May 2022).
- ABIROCHAS—Associação Brasileira da Indústria de Rochas Ornamentais. Balanço das Exportações e Importações Brasileiras de Rochas Ornamentais em 2019. Informe 01/2020. Available online: http://www.abirochas.com.br/abirochas-home/ (accessed on 15 May 2022).
- Vidal, F.W.H.; Azevedo, H.C.A.; Castro, N.F. Tecnologia de Rochas Ornamentais: Pesquisa, Lavra e Beneficiamento; Centro de Tecnologia Mineral, CETEM/MCTI: Rio de Janeiro, Brazil, 2014; 700p. [Google Scholar]
- Stockholm Declaration. Stockholm Declaration on the Human Environment, in the Report of the United Nations Conference on the Human Environment. UN Doc.A/CONF.48/14, at 2 and Corr.1. 1972. Available online: https://wedocs.unep.org/20.500.11822/30829 (accessed on 10 May 2022).
- Goodman, B.A. Utilization of waste straw and husks from rice production: A review. Food Bioprod. Bioprod. 2020, 5, 143–162. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Orejuela-Escobar, L.M.; Landázuri, A.C.; Goodell, B. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. J. Bioresour. Bioprod. 2021, 6, 83–107. [Google Scholar] [CrossRef]
- Silveira, L.L.L.; Vidal, F.W.H.; Souza, J.C. Beneficiamento de rochas ornamentais. In Tecnologia de Rochas Ornamentais: Pesquisa, Lavra e Beneficiamento; CETEM/MCTI: Rio de Janeiro, Brazil, 2014; Chapter 7; pp. 329–398. [Google Scholar]
- Campos, A.R.; Ribeiro, R.C.; Castro, N.F.; Azevedo, H.C.; Cattabriga, L. Resíduos: Tratamento e Aplicações Industriais. In Tecnologia de Rochas Ornamentais: Pesquisa, Lavra e Beneficiamento; Vidal, F.V., Azevedo, H.C.A., Castro, N.F., Eds.; Centro de Tecnologia Mineral: Rio de Janeiro, Brazil, 2014; Chapter 9; p. 435. [Google Scholar]
- Freire, A.S.; Motta, J.F. Potencialidades para o aproveitamento econômico do rejeito da serragem do granito. Rev. Rochas De Qual. 1995, 123, 98–108. [Google Scholar]
- Calmon, J.L.; TristãO, F.A.; Lordêllo, F.S.; Silva, S.A.; Mattos, F.V. Aproveitamento do resíduo de corte de granito para a produção de tijolos de solo-cimento. In VII Encontro Nacional de Tecnologia do Ambiente Construído. Anais; ANTAC: Florianópolis, Brazil, 1998. [Google Scholar]
- Aguiar, L.L.; Tonon, C.B.; Nunes, E.T.; Braga, A.C.A.; Neves, M.A.; David, J.A.O. Mutagenic potential of fine wastes from dimension stone industry. Ecotoxicol. Environ. Saf. 2016, 125, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, M.; Ncibi, C. The Circular Economy: Case Studies about the Transition from the Linear Economy; Department of Green Chemistry, LUT University: Lappeenranta, Finland; Academic Press: Cambridge, MA, USA, 2019; 344p. [Google Scholar]
- Simão, L.; Hotza, D.; Ribeiro, M.J.; Novais, R.M.; Montedo, O.R.K.; Raupp-Pereira, F. Development of new geopolymers based on stone cutting waste. Constr. Build. Mater. 2020, 257, 119525. [Google Scholar] [CrossRef]
- Meneguete, D.S.; Batista, L.C.; Cesconetto, W.A., Jr. Aproveitamento de resíduos gerados no corte de rochas ornamentais em pavimentação asfáltica para melhoramento de base. Rev. Mosaicum 2018, 27, 225–236. [Google Scholar] [CrossRef]
- Babisk, M.P.; Gomes, V.R.; Sampaio, J.A.; Gadioli, M.C.B.; Vidal, F.W.H. Development of Silicate Glasses with Waste. In Green Materials Engineering; The Minerals, Metals & Materials Series; Ikhmayies, S., Li, J., Vieira, C., Margem, J., de Oliveira Braga, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Gomes, V.R.; Babisk, M.P.; Vieira, C.M.F.; Sampaio, J.A.; Vidal, F.W.H.; Gadioli, M.C.B. Ornamental stone wastes as an alternative raw material for soda-lime glass manufacturing. Mater. Lett. 2020, 269, 127579. [Google Scholar] [CrossRef]
- Zulcão, R.; Calmon, J.L.; Rebello, T.A.; Vieira, D.R. Life cycle assessment of the ornamental stone processing waste use in cement-based building materials. Constr. Build. Mater. 2020, 257, 119523. [Google Scholar] [CrossRef]
- ANICER—Associação Nacional da Indústria Cerâmica. Dados do Setor. 2020. Available online: http://www.anicer.com.br (accessed on 1 May 2022).
- ANICER—Associação Nacional da Indústria Cerâmica. Informações Técnicas. 2020. Available online: http://www.abceram.org.br (accessed on 4 May 2022).
- SEBRAE—Serviço Brasileiro de Apoio às Micro e Pequenas Empresas. Boletim de Inteligência. Construção Civil: Cerâmica Vermelha. Dezembro; Serviço Brasileiro de Apoio às Micro e Pequenas Empresas: Brasília, Brasil, 2015. [Google Scholar]
- NBR 7180; Determinação de Limites de Plasticidade: Método de Ensaio. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 1984.
- NBR 6459; Determinação do Limite de Liquidez: Método de Ensaio. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 1984.
- ASTM C373-72; Test Method for Water Absorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity of Fired Whiteware Products. American Society for Testing and Materials: West Conshohocken, PA, USA, 1977.
- ASTM C373-88; Test Method for Water Absorption, Bulk Density and Apparent Porosity. American Society for Testing and Materials: West Conshohocken, PA, USA, 1994.
- NBR 15270-2; Componentes Cerâmicos—Blocos e Tijolos Para Alvenaria. Parte 2: Métodos de Ensaio. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2017.
- ASTM C674-77; Flexural Properties of Ceramic Whiteware Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 1977.
- NBR 10004; Resíduos Sólidos—Classificação. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- NBR 10005; Procedimento Para Obtenção de Extrato Lixiviado de Resíduos Sólido. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- NBR 10006; Procedimento Para Obtenção de Extrato Solubilizado de Resíduos Sólidos. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- Vieira, C.M.F.; Terrones, L.A.; Sánchez, R.; Monteiro, S.N. Características e efeito da fração granulométrica < 2 μm no comportamento de queima de uma argila. Cerâmica 2007, 53, 249–254. [Google Scholar]
- Gadioli, M.C.B.; Aguiar, M.C.; Vieira, C.M.F.; Filho, F.C.G.; Monteiro, S.N. Microstructural characterization of clay-based ceramics with the addition of granite residues. Mater. Sci. Forum 2019, 958, 123–128. [Google Scholar] [CrossRef]
- Gadioli, M.C.B.; Poncian, V.M.; Bessa, B.H.R.; Camargo, J.L.; Pizeta, P.P. Characterization of ornamental stones wastes for use in ceramic materials. Mater. Sci. Forum 2019, 958, 129–134. [Google Scholar] [CrossRef]
- Sant’ana, M.A.K.; Gadioli, M.C.B.; Babisk, M.P.; Vieira, C.M.F. Use of Waste of Ornamental Stone in Ceramic Mass Incorporation in Brazil. In Green Materials Engineering; The Minerals, Metals & Materials Series; Ikhmayies, S., Li, J., Vieira, C., Margem, J., de Oliveira Braga, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Aguiar, M.C.; Gadioli, M.C.B.; Babisk, M.P.; Candido, V.S.; Monteiro, S.N.; Vieira, C.M.F. Clay ceramic incorporated with granite waste obtained from diamond multi-wire. Mater. Sci. Forum. 2014, 775–776, 648–652. [Google Scholar] [CrossRef]
- Aguiar, M.C.; Gadioli, M.C.B.; Babisk, M.P.; Candido, V.S.; Monteiro, S.N.; Vieira, C.M.F. Characterization of a granite waste for clay ceramic addition. Mater. Sci. Forum 2014, 775–776, 699–704. [Google Scholar] [CrossRef]
- Babisk, M.P.; Ribeiro, W.S.; Aguiar, M.C.; Candido, V.S.; Gadioli, M.C.B.; Monteiro, S.N.; Vieira, C.M.F. Influence of quartzite residues on the strength of added red clay ceramics. Mater. Sci. Forum 2014, 775–776, 541–546. [Google Scholar] [CrossRef]
- Riella, H.G.; Franjndlich, E.U.C.; Durazzo, M. Caracterização e Utilização de Fundentes em Massas Cerâmicas. Cerâmica Ind. 2002, 7, 33–36. [Google Scholar]
- Pinheiro, B.C.A.; Holanda, J.N.F. Efeito da temperatura de queima em algumas propriedades mecânicas de cerâmica vermelha. Cerâmica 2010, 56, 237–243. [Google Scholar] [CrossRef]
- Ashby, M.F.; Jones, D.R.H. Engenharia de Materiais: Uma Introdução a Propriedades, Aplicações e Projeto, 3rd ed.; Elsevier: Rio de Janeiro, Brazil, 2007; Volume 2, pp. 188–191. [Google Scholar]
- NBR 15270-1; Componentes Cerâmicos—Blocos e Tijolos Para Alvenaria. Parte 1: Requisitos. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2017.
- NBR 15310; Componentes Cerâmicos—Telhas—Terminologia, Requisitos e Métodos de Ensaio. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2009.
- Babisk, M.P.; Vida, F.W.H.; Ribeiro, W.S.; Aguiar, M.C.; Gadioli, M.C.B.; Vieira, C.M.F. Incorporação de resíduo de quartzitos em cerâmica vermelha. Holos 2012, 6, 169–177. [Google Scholar] [CrossRef]
- Barreto, G.N.S.; Babisk, M.P.; Delaqua, G.C.G.; Gadioli, M.C.B.; Fontes Vieira, C.M. Study of Incorporation of Fuel and Fluxing Wastes in Red Ceramics. In Green Materials Engineering; The Minerals, Metals & Materials Series; Ikhmayies, S., Li, J., Vieira, C., Margem, J., de Oliveira Braga, F., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Aguiar, M.C. Utilização de Resíduo de Serragem de Rocha Ornamental com Tecnologia de fio Diamantado em Cerâmica Vermelha. Master’s thesis, Campos dos Goytacazes-RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Rio de Janeiro, Brazil, 2012. [Google Scholar]
Compositions of Mass Formulations | ||||||
---|---|---|---|---|---|---|
Raw Material | AP | 10% | 20% | 30% | 40% | 50% |
Ceramic Mass | 100 | 90 | 80 | 70 | 60 | 50 |
Waste | - | 10 | 20 | 30 | 40 | 50 |
SiO2 | Al2O3 | Fe2O3 | Na2O | MgO | K2O | P2O5 | CaO | Ti2O | SO3 | BaO | LOI * | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ceramic Mass | 41.60 | 30.80 | 9.00 | 0.13 | 1.20 | 0.92 | 0.17 | 0.16 | 1.30 | - | - | 14.60 |
Waste | 56.00 | 19.90 | 5.80 | 5.40 | 1.60 | 4.30 | 0.48 | 3.60 | 1.10 | 0.19 | 0.59 | 0.74 |
Ceramic Masses | ||||||
---|---|---|---|---|---|---|
Plasticity | PC | 10% GW | 20% GW | 30% GW | 40% GW | 50% GW |
LP | 27.7 | 29.3 | 29.4 | 27.8 | 25.3 | 23.7 |
LL | 60.1 | 54.5 | 51.8 | 49.2 | 44.5 | 43.0 |
IP | 32.4 | 25.2 | 22.4 | 21.3 | 19.2 | 19.3 |
Analysis | Results | Maximum Limit NBR 10004 | |||
---|---|---|---|---|---|
Leached | Total Arsenic | <0.0010 | mg/L | 1 | mg/L |
Total Barium | 1.107 | mg/L | 70 | mg/L | |
Total Cadmium | <0.0010 | mg/L | 0.5 | mg/L | |
Total Lead | <0.010 | mg/L | 1 | mg/L | |
Total Chrome | <0.010 | mg/L | 5 | mg/L | |
Total Mercury | <0.00010 | mg/L | 0.1 | mg/L | |
Total Silver | <0.0010 | mg/L | 5 | mg/L | |
Total Selenium | <0.010 | mg/L | 1 | mg/L | |
Total Fluoride | 0.9 | mg/L | 150 | mg/L | |
1,1,2-Trichloroethene | <2.00 | µg/L | - | µg/L | |
1,1-Dichloroethene | <2.00 | µg/L | 3 | mg/L | |
1,2-Dichloroethane | <2.00 | µg/L | 1 | mg/L | |
1,4-Dichlorobenzene | <2.00 | µg/L | 7.5 | mg/L | |
2,4,5-Trichlorophenol | <0.10 | µg/L | 400 | mg/L | |
2,4,6-Trichlorophenol | <0.10 | µg/L | 20 | mg/L | |
2,4-Dinitrotoluene | <0.010 | µg/L | 0.13 | mg/L | |
Benzene | <2.00 | µg/L | 0.5 | mg/L | |
Benzo(a)pyrene | <0.010 | µg/L | 0.07 | mg/L | |
Vinyl chloride | <2.00 | µg/L | 0.5 | mg/L | |
Chlorobenzene | <2.00 | µg/L | 100 | mg/L | |
Chloroform | 7.89 | µg/L | 6 | mg/L | |
Total cresol | <0.010 | µg/L | 200 | mg/L | |
Hexachlorobenzene | <0.010 | µg/L | 0.1 | mg/L | |
Hexachlorobutadiene | <2.00 | µg/L | 0.5 | mg/L | |
Hexachloroethane | <0.010 | µg/L | 3 | µg/L | |
Nitrobenzene | <0.010 | µg/L | 2 | mg/L | |
Final pH of Leachate | 5.25 | ||||
Pyridine | 0 | µg/L | 5 | mg/L | |
Carbon tetrachloride | <2.00 | µg/L | 0.2 | mg/L | |
Tetrachloroethene | <2.00 | µg/L | 4 | mg/L | |
2-Methylphenol (o-cresol) | <0.10 | µg/L | 200 | mg/L | |
3-Methylphenol, 4-methylphenol (m,p-cresol) | <0.10 | µg/L | 200 | mg/L | |
Methyl ethyl ketone | <1.00 | µg/L | 200 | mg/L |
Analysis | Results | Maximum Limit NBR 10004 | |||
---|---|---|---|---|---|
Solubilized | Total Aluminum | 0.165 | mg/L | 0.2 | mg/L |
Total Arsenic | 0.0024 | mg/L | 0.01 | mg/L | |
Total Barium | 0.076 | mg/L | 0.7 | mg/L | |
Total Cadmium | <0.0010 | mg/L | 0.005 | mg/L | |
Total Lead | <0.010 | mg/L | 0.01 | mg/L | |
Total Chloride | 9 | mg/L | 250 | mg/L | |
Total Copper | 0 | mg/L | 2 | mg/L | |
Total Chrome | <0.010 | mg/L | 0.05 | mg/L | |
Total Iron | 0 | mg/L | 0.3 | mg/L | |
Total Manganese | 0.015 | mg/L | 0.1 | mg/L | |
Total Mercury | <0.00010 | mg/L | 0.001 | mg/L | |
Nitrate (as N) | 0.07 | mg/L | 10 | mg/L | |
Total Silver | <0.0010 | mg/L | 0.05 | mg/L | |
Total Selenium | <0.010 | mg/L | 0.01 | mg/L | |
Total Sodium | 12.41 | mg/L | 200 | mg/L | |
Total Zinc | <0.010 | mg/L | 5 | mg/L | |
Total Cyanide | <0.002 | mg/L | 0.07 | mg/L | |
Total Phenols | <0.003 | mg/L | 0.01 | mg/L | |
Total Fluoride | <0.4 | mg/L | 1.5 | mg/L | |
Hexachlorobenzene | <0.010 | µg/L | 0.001 | mg/L | |
Final pH of Solubilized | 7.42 | ||||
Total Sulfate | 46.1 | mg/L | 250 | mg/L | |
Surfactants | <0.10 | mg/L | 0.5 | mg/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadioli, M.C.B.; de Aguiar, M.C.; Vidal, F.W.H.; Sant’Ana, M.A.K.; de Almeida, K.M.; Giori, A.J.N. Incorporation of Ornamental Stone Waste in the Manufacturing of Red Ceramics. Materials 2022, 15, 5635. https://doi.org/10.3390/ma15165635
Gadioli MCB, de Aguiar MC, Vidal FWH, Sant’Ana MAK, de Almeida KM, Giori AJN. Incorporation of Ornamental Stone Waste in the Manufacturing of Red Ceramics. Materials. 2022; 15(16):5635. https://doi.org/10.3390/ma15165635
Chicago/Turabian StyleGadioli, Mônica Castoldi Borlini, Mariane Costalonga de Aguiar, Francisco Wilson Hollanda Vidal, Maria Angelica Kramer Sant’Ana, Kayrone Marvila de Almeida, and Ana Júlia Nali Giori. 2022. "Incorporation of Ornamental Stone Waste in the Manufacturing of Red Ceramics" Materials 15, no. 16: 5635. https://doi.org/10.3390/ma15165635
APA StyleGadioli, M. C. B., de Aguiar, M. C., Vidal, F. W. H., Sant’Ana, M. A. K., de Almeida, K. M., & Giori, A. J. N. (2022). Incorporation of Ornamental Stone Waste in the Manufacturing of Red Ceramics. Materials, 15(16), 5635. https://doi.org/10.3390/ma15165635