Modal Analysis Using Digital Image Correlation Technique
Abstract
:1. Introduction
2. Digital Image Correlation Method (DIC)
3. Application Module for Modal Analysis
- -
- .ISSJD, which defines the export of the required ISTRA4D measurement data to Scilab.
- -
- .SCE or .SCI, which works with the exported measurement data and transforms them on the basis of mathematical-physical relations into the required resulting parameters. It is the script itself created in Scilab.
4. Measurement of Input Data Using DIC for EMA Solution
- Image acquisition time = 1 s;
- Frame rate = 5000 fps;
- Facet size = 21 pixels;
- Application grid spacing = 17 pixels.
5. FEM Modal Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trebuna, F.; Šimcák, F.; Frankovský, P.; Huňady, R.; Pástor, M. The Application of Optical Methods in Experimental Mechanics; Technical University of Košice: Košice, Slovakia, 2014. [Google Scholar]
- Šároši, P.; Harčarík, T.; Huňady, R. Vibrational study of the spinning disc using LDV technique. Appl. Mech. Mater. 2015, 816, 469–473. [Google Scholar] [CrossRef]
- Zucca, S.; Di Maio, D.; Ewins, D.J. Measuring the performance of underplatform dampers for turbine blades by rotating laser Doppler vibrometer. Mechanical systems and signal processing. Mech. Syst. Signal Proc. 2012, 32, 269–281. [Google Scholar] [CrossRef]
- Stanbridge, A.B.; Martarelli, M.; Ewins, D.J. Measuring area vibration mode shapes with a continuous-scan LDV. Measurement 2004, 35, 181–189. [Google Scholar] [CrossRef]
- Trebuňa, F.; Šimčák, F.; Huňady, R.; Pástor, M. Identification of pipes damages on gas compressor stations by modal analysis methods. Eng. Fail. Anal. 2013, 27, 213–224. [Google Scholar] [CrossRef]
- Marwitz, S.; Zabel, V. Operational modal analysis with a 3d laser vibrometer without external reference. In Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry; Springer: Cham, Switzerland, 2016; Volume 8, pp. 75–85. [Google Scholar]
- Xu, Y.F.; Zhu, W.D. Operational modal analysis of a rectangular plate using non-contact excitation and measurement. J. Sound Vib. 2013, 332, 4927–4939. [Google Scholar] [CrossRef]
- Trebuňa, F.; Šimčák, F.; Huňady, R. Vibration and Modal Analysis of Mechanical Systems; Technical University of Kosice: Kosice, Slovakia, 2012. [Google Scholar]
- Genovese, K.; Cortese, L.; Rossi, M.; Amodio, D. A 360-deg digital image correlation system for materials testing. Opt. Lasers Eng. 2016, 82, 127–134. [Google Scholar] [CrossRef]
- Pan, B.; Yu, L.; Yang, Y.; Song, W.; Guo, L. Full-field transient 3D deformation measurement of 3D braided composite panels during ballistic impact using single-camera high-speed stereo-digital image correlation. Compos. Struct. 2016, 157, 25–32. [Google Scholar] [CrossRef]
- Gariboldi, E.; Naumenko, K.; Ozhoga-Maslovskaja, O.; Zappa, E. Analysis of anisotropic damage in forged Al–Cu–Mg–Si alloy based on creep tests, micrographs of fractured specimen and digital image correlations. Mater. Sci. Eng. A 2016, 652, 175–185. [Google Scholar] [CrossRef]
- Hagara, M.; Huňady, R.; Trebuňa, F. Stress Analysis Performed in the Near Surrounding of Small Hole by a Digital Image Correlation Method. Acta Mech. Slovaca 2015, 18, 74–81. [Google Scholar] [CrossRef]
- Passieux, J.C.; Navarro, P.; Périé, J.N.; Marguet, S.; Ferrero, J.F. A digital image correlation method for tracking planar motions of rigid spheres: Application to medium velocity impacts. Exp. Mech. 2014, 54, 1453–1466. [Google Scholar] [CrossRef]
- Hagara, M.; Huňady, R. The influence of sampling frequency on the results of motion analysis performed by high-speed digital image correlation. Appl. Mech. Mater. 2015, 816, 397–403. [Google Scholar] [CrossRef]
- Chu, T.C.; Ranson, W.F.; Sutton, M.A. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 1985, 25, 232–244. [Google Scholar] [CrossRef]
- Sutton, M.A.; Wolters, W.J.; Peters, W.H.; Ranson, W.F.; McNeill, S.R. Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1983, 1, 133–139. [Google Scholar] [CrossRef]
- Halama, R.; Fusek, M.; Fojtik, F.; Kot, T. Real Time Measurement and Evaluation of Washer Extractor Vibrations. In Proceedings of the 50th Annual Conference on Experimental Stress Analysis, Tabor, Czech Republic, 4–7 June 2012; pp. 129–134. [Google Scholar]
- Huňady, R.; Hagara, M.; Šimčák, F. The influence of facet size on the accuracy of modal parameters determined by Digital Image Correlation technique. Appl. Mech. Mater. 2014, 611, 496–500. [Google Scholar] [CrossRef]
- Sutton, M.A.; Orteu, J.J.; Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
- Klarák, J.; Andok, R.; Hricko, J.; Klačková, I.; Tsai, H.Y. Design of the automated calibration process for an experimental laser inspection stand. Sensors 2022, 22, 5306. [Google Scholar] [CrossRef]
- Ha, N.S.; Vang, H.M.; Goo, N.S. Modal analysis using digital image correlation technique: An application to artificial wing mimicking beetle’s hind wing. Exp. Mech. 2015, 55, 989–998. [Google Scholar] [CrossRef]
- Wang, W.; Mottershead, J.E.; Ihle, A.; Siebert, T.; Schubach, H.R. Finite element model updating from full-field vibration measurement using digital image correlation. J. Sound Vib. 2011, 330, 1599–1620. [Google Scholar] [CrossRef]
- Reu, P.L.; Rohe, D.P.; Jacobs, L.D. Comparison of DIC and LDV for practical vibration and modal measurements. Mech. Syst. Signal Processing 2017, 86, 2–16. [Google Scholar] [CrossRef]
- Ehrhardt, D.A.; Allen, M.S.; Yang, S.; Beberniss, T.J. Full-field linear and nonlinear measurements using continuous-scan laser doppler vibrometry and high speed three-dimensional digital image correlation. Mech. Syst. Signal Process. 2017, 86, 82–97. [Google Scholar] [CrossRef]
- Trebuňa, F.; Huňady, R.; Bobovský, Z.; Hagara, M. Results and experiences from the application of digital image correlation in operational modal analysis. Acta Polytech. Hung. 2013, 10, 159–174. [Google Scholar]
- Dantec Dynamics. Q-450 Product Flyer: Advanced Full-Field 3D Vibration Analysis. 2010. Available online: www.dantecdynamics.com (accessed on 12 July 2022).
- Sharpe, W.N. (Ed.) Springer Handbook of Experimental Solid Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kicko, M. Stress Analysis of Dynamically Loaded of Structural Elements Using Optical Experimental Methods of Mechanics. Ph.D. Thesis, Technical University of Košice, Košice, Slovakia, 2021; p. 73. [Google Scholar]
- Siebert, T.; Splitthof, K.; Stecklum, S.; Herbst, C. New features in digital image correlation techniques. In Proceedings of the 22nd DANUBIA-ADRIA Symposium on Experimental Methods in Solid Mechanics, Parma, Italy, 28 September–1 October 2005. [Google Scholar]
- Verhulp, E.; van Rietbergen, B.; Huiskes, R. A three-dimensional digital image correlation technique for strain measurements in microstructures. J. Biomech. 2004, 37, 1313–1320. [Google Scholar] [CrossRef]
- Batel, M. Operational modal analysis-another way of doing modal testing. Sound Vib. 2002, 36, 22–27. [Google Scholar]
- MacMillan, B.; Batel, M.; Dascotte, E.; Verbeeck, B. OMA testing by SLDV with FEM pre and post test analysis. In Proceedings of the 22nd International Modal Analysis Conference (IMAC XXII), Detroit, MI, USA, 26–29 January 2004. [Google Scholar]
- Rainieri, C.; Fabbrocino, G.; Manfredi, G.; Dolce, M. Robust output-only modal identification and monitoring of buildings in the presence of dynamic interactions for rapid post-earthquake emergency management. Eng. Struct. 2012, 34, 436–446. [Google Scholar] [CrossRef]
- Brincker, R.; Ventura, C.E.; Andersen, P. Damping estimation by frequency domain decomposition. In Proceedings of the IMAC 19: A Conference on Structural Dynamics, Kissimmee, FL, USA, 5–8 February 2001; pp. 698–703. [Google Scholar]
- Brincker, R.; Zhang, L.; Andersen, P. Modal identification from ambient responses using frequency domain decomposition. In Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, TX, USA, 7–10 February 2000; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1, pp. 625–630. [Google Scholar]
- Brincker, R.; Zhang, L.; Andersen, P. Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 2001, 10, 441. [Google Scholar] [CrossRef]
- Jacobsen, N.J.; Andersen, P.; Brincker, R. Using EFDD as a robust technique for deterministic excitation in operational modal analysis. In Proceedings of the 2nd International Operational Modal Analysis Conference, Copenhagen, Denmark, 30 April–2 May 2007; pp. 193–200. [Google Scholar]
- Sága, M.; Bednár, R.; Vaško, M. Contribution to modal and spectral interval finite element analysis. In Vibration Problems ICOVP; Springer: Berlin/Heidelberg, Germany, 2011; pp. 269–274. [Google Scholar]
- Brandt, A. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hammond, J.K.; Waters, T.P. Signal processing for experimental modal analysis. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2001, 359, 41–59. [Google Scholar] [CrossRef]
- Saga, M.; Jakubovicova, L. Simulation of vertical vehicle non-stationary random vibrations considering various speeds. Zesz. Nauk. Transp. Politech. Śląska 2014, 84, 115–118. [Google Scholar]
- Papagiannopoulos, G.A.; Hatzigeorgiou, G.D. On the use of the half-power bandwidth method to estimate damping in building structures. Soil Dyn. Earthq. Eng. 2011, 31, 1075–1079. [Google Scholar] [CrossRef]
- De Silva, C.W. Vibration: Fundamentals and Practice; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Sapietová, A.; Chovanculiak, F.; Dekýš, V.; Gajdoš, L. The contribution to the modal analysis of the control system. MATEC Web Conf. 2018, 244, 01014. [Google Scholar] [CrossRef]
- Olmos, B.A.; Roesset, J.M. Evaluation of the half-power bandwidth method to estimate damping in systems without real modes. Earthq. Eng. Struct. Dyn. 2010, 39, 1671–1686. [Google Scholar] [CrossRef]
- Kvetan, K.; Kubliha, M.; Kotianová, J.; Bošák, O. Stimulated deceleration of bending vibrationsas a method for determining the tensile modulus of thin round cross-sectional samples. Acta Mechatron. 2019, 4, 1–5. [Google Scholar] [CrossRef]
- Pivarčiová, E.; Domnina, K.; Ságová, Z. Design of the construction and research of vibrations and heat transfer of mine workings. Acta Montan. Slovaca 2019, 24, 15–24. [Google Scholar]
- Siebert, T.; Hack, E.; Lampeas, G.; Patterson, E.A.; Splitthof, K. Uncertainty quantification for DIC displacement measurements in industrial environments. Exp. Tech. 2021, 45, 685–694. [Google Scholar] [CrossRef]
- Li, J.; Xie, X.; Yang, G.; Zhang, B.; Siebert, T.; Yang, L. Whole-field thickness strain measurement using multiple camera digital image correlation system. Opt. Lasers Eng. 2017, 90, 19–25. [Google Scholar] [CrossRef]
- Reu, P.L.; Blaysat, B.; Andó, E.; Bhattacharya, K.; Couture, C.; Couty, V.; Deb, D.; Fayad, S.S.; Iadicola, M.A.; Jaminion, S.; et al. DIC challenge: Developing images and guidelines for evaluating accuracy and resolution of 2D analyses. Exp. Mech. 2018, 58, 1067–1099. [Google Scholar] [CrossRef]
- Schürger, B.; Kicko, M.; Neumann, V.; Frankovský, P. Modal Analysis of Beam Oscillation. Acta Mech. Slovaca 2021, 25, 52–58. [Google Scholar] [CrossRef]
- Schwarz, B.J.; Richardson, M.H. Experimental modal analysis. CSI Reliab. Week 1999, 35, 1–12. [Google Scholar]
- Xiong, C.; Lu, H.; Zhu, J. Operational modal analysis of bridge structures with data from GNSS/accelerometer measurements. Sensors 2017, 17, 436. [Google Scholar] [CrossRef]
- Guan, C.; Zhang, H.; Wang, X.; Miao, H.; Zhou, L.; Liu, F. Experimental and theoretical modal analysis of full-sized wood composite panels supported on four nodes. Materials 2017, 10, 683. [Google Scholar] [CrossRef]
- Rashidi, M.; Sharafi, P.; Alembagheri, M.; Bigdeli, A.; Samali, B. Operational modal analysis, testing and modelling of prefabricated steel modules with different LSF composite walls. Materials 2020, 13, 5816. [Google Scholar] [CrossRef]
- Sanfilippo, D.; Ghiassi, B.; Alexiadis, A.; Hernandez, A.G. Combined peridynamics and discrete multiphysics to study the effects of air voids and freeze-thaw on the mechanical properties of asphalt. Materials 2021, 14, 1579. [Google Scholar] [CrossRef]
- Zhou, S.; Ju, J.W. A chemo-micromechanical damage model of concrete under sulfate attack. Int. J. Damage Mech. 2021, 30, 1213–1237. [Google Scholar] [CrossRef]
- Zhou, S.; Zhuang, X. Micromechanical study of loading rate effects between a hole and a crack. Undergr. Space 2019, 4, 22–30. [Google Scholar] [CrossRef]
Mode | EMA Analysis [Hz] | FEM Analysis [Hz] | Difference [Hz] | Difference [%] |
---|---|---|---|---|
Mode 1 | 32.55 | 29.95 | 2.6 | 7.99 |
Mode 2 | 82.56 | 71.93 | 10.63 | 12.88 |
Mode 3 | 197.71 | 183.23 | 14.48 | 7.32 |
Mode 4 | 275.26 | 225.82 | 49.44 | 17.96 |
Mode 5 | 307.78 | 263.63 | 44.15 | 14.34 |
Mode 6 | 530.39 | 456.04 | 74.35 | 14.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankovský, P.; Delyová, I.; Sivák, P.; Bocko, J.; Živčák, J.; Kicko, M. Modal Analysis Using Digital Image Correlation Technique. Materials 2022, 15, 5658. https://doi.org/10.3390/ma15165658
Frankovský P, Delyová I, Sivák P, Bocko J, Živčák J, Kicko M. Modal Analysis Using Digital Image Correlation Technique. Materials. 2022; 15(16):5658. https://doi.org/10.3390/ma15165658
Chicago/Turabian StyleFrankovský, Peter, Ingrid Delyová, Peter Sivák, Jozef Bocko, Jozef Živčák, and Michal Kicko. 2022. "Modal Analysis Using Digital Image Correlation Technique" Materials 15, no. 16: 5658. https://doi.org/10.3390/ma15165658
APA StyleFrankovský, P., Delyová, I., Sivák, P., Bocko, J., Živčák, J., & Kicko, M. (2022). Modal Analysis Using Digital Image Correlation Technique. Materials, 15(16), 5658. https://doi.org/10.3390/ma15165658