Compositional Dependence of Magnetocrystalline Anisotropy, Magnetic Moments, and Energetic and Electronic Properties on Fe-Pt Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Energetic and Magnetic Properties
3.2. Density of States
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Stocks, G.M.; Rusanu, A.; Nicholson, D.M.C.; Eisenbach, M.; Zhang, Q.; Liu, J.P. Electronic and magnetic structure of L10-FePt nanoparticle embedded in FePt random alloy. IEEE Trans. Magn. 2007, 43, 3103. [Google Scholar] [CrossRef]
- Saito, Y.; Uemura, S. Field emission from carbon nanotubes and its application to electron sources. Carbon 2000, 38, 169. [Google Scholar] [CrossRef]
- Bian, B.; Laughlin, D.E.; Sato, K.; Hirotsu, Y. Fabrication and nanostructure of oriented FePt particles. J. Appl. Phys. 2000, 87, 6962. [Google Scholar] [CrossRef]
- Ulmeanu, M.; Antoniak, C.; Wiedwald, U.; Farle, M.; Frait, Z.; Sun, S. Composition-dependent ratio of orbital-to-spin magnetic moment in structurally disordered FexPt1−x nanoparticles. Phys. Rev. B 2004, 69, 054417. [Google Scholar] [CrossRef]
- Antoniak, C.; Spasova, S.; Trunova, A.; Fauth, K.; Farle, M.; Wende, H. Correlation of magnetic moments and local structure of FePt nanoparticles. J. Phys. Conf. Ser. 2009, 190, 012118. [Google Scholar] [CrossRef]
- Alsaad, A.; Ahmad, A.A.; Obeidat, T.S. Structural, electronic and magnetic properties of the ordered binary FePt, MnPt, and CrPt3 alloys. Heliyon 2020, 6, e03545. [Google Scholar] [CrossRef]
- Khan, S.A.; Blaha, P.; Ebert, H.; Minar, J.; Sipr, O. Magnetocrystalline anisotropy of FePt: A detailed view. Phys. Rev. B 2016, 94, 144436. [Google Scholar] [CrossRef]
- Ono, T.; Nakata, H.; Moriya, T.; Kikuchi, N.; Okamoto, S.; Kitakami, O.; Shimatsu, T. Experimental investigation of off-stoichiometry and 3d transition metal (Mn, Ni, Cu)-substitution in single-crystalline FePt thin films. AIP Adv. 2016, 6, 056011. [Google Scholar] [CrossRef]
- Cuadrado, R.; Klemmer, T.J.; Chantrell, R.W. Magnetic anisotropy of Fe1−yXyPt-L10 [X = Cr, Mn, Co, Ni, Cu] bulk alloys. Appl. Phys. Lett. 2014, 105, 152406. [Google Scholar] [CrossRef]
- Burkert, T.; Eriksson, O.; Simak, S.I.; Ruban, A.V.; Sanyal, B.; Nordström, L.; Wills, J.M. Magnetic anisotropy of L10 FePt and Fe1−x MnxPt. Phys. Rev. B 2005, 71, 134411. [Google Scholar] [CrossRef]
- Aas, C.J.; Szunyogh, L.; Chantrell, R.W. Effects of composition and chemical disorder on the magnetocrystalline anisotropy of FexPt1−x alloys. EPL 2013, 102, 57004. [Google Scholar] [CrossRef]
- Barmak, K.; Kim, J.; Lewis, L.H.; Coffey, K.R.; Toney, M.F.; Kellock, A.J.; Thiele, J.U. On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films. J. Appl. Phys. 2005, 98, 033904. [Google Scholar] [CrossRef]
- Turek, I.; Kudrnovsky, J.; Carva, K. Magnetic anisotropy energy of disordered tetragonal Fe-Co systems from ab initio alloy theory. Phys. Rev. B 2012, 86, 174430. [Google Scholar] [CrossRef]
- Galanakis, I.; Alouani, G.M.; Dreysse, H. Spin-axis-dependent magnetic properties of FePt and CoPt. Phys. B 2002, 320, 221. [Google Scholar] [CrossRef]
- Lu, Z.; Chepulskii, R.V.; Butler, W.H. First-principles study of magnetic properties of L10-ordered MnPt and FePt alloys. Phys. Rev. B 2010, 81, 094437. [Google Scholar] [CrossRef]
- Shi, Y.; Lin, M.; Jiang, X.; Liang, S. Recent Advances in FePt Nanoparticles for Biomedicine. J. Nanomat. 2015, 2015, 467873. [Google Scholar] [CrossRef]
- Wei, D.H.; Lin, T.K.; Liang, Y.C.; Chang, H.W. Formation and application of core–shell of FePt-Au magnetic–plasmonic nanoparticles. Front. Chem. 2021, 9, 653718. [Google Scholar] [CrossRef]
- Rellinghaus, B.; Kastner, J.; Schneider, T.; Wassermann, E.F.; Mohn, P. Thermodynamic analysis of Fe72Pt28 Invar. Phys. Rev. B 1995, 51, 2983. [Google Scholar] [CrossRef]
- Whang, S.H.; Feng, Q.; Gao, Y. Ordering, deformation and microstructure in L10 type FePt. Acta. Mater. 1998, 46, 6485. [Google Scholar] [CrossRef]
- Lyubina, J.; Opahle, I.; Richter, M.; Gutfleisch, O.; Müller, K.; Schultz, L. Influence of composition and order on the magnetism of Fe–Pt alloys: Neutron powder diffraction and theory. App. Phys. Lett. 2006, 89, 032506. [Google Scholar] [CrossRef]
- Sternik, M.; Couet, S.; Lazewski, J.; Jochym, P.T.; Parlinski, K.; Vantomme, A.; Temst, A.V.K.; Piekarz, P. Dynamical properties of ordered Fe–Pt alloys. J. Alloys Compd. 2015, 651, 528. [Google Scholar] [CrossRef]
- Laughlin, D.E.; Srinivasan, K.; Tanase, M.; Wang, L. Crystallographic aspects of L10 magnetic materials. Scr. Mater. 2005, 53, 383. [Google Scholar] [CrossRef]
- Muto, S.; Oshima, R.; Fujita, F.E. Electron microscope study on martensitic transformations in Fe-Pt alloys: General features of internal structure. Metall. Trans. 1988, 19, 2723. [Google Scholar] [CrossRef]
- Kajiwara, S.; Owen, W.S. The reversible martensite transformation in iron-platinum alloys near Fe3Pt. Metal. Trans. 1974, 5, 2047. [Google Scholar] [CrossRef]
- Gruner, M.E.; Adeagbo, W.A.; Zayak, A.T.; Hucht, A.; Entel, P. Lattice dynamics and structural stability of ordered Fe3Ni, Fe3Pd and Fe3Pt alloys using density functional theory. Phys. Rev. B 2010, 81, 064109. [Google Scholar] [CrossRef]
- Noda, Y.; Endoh, Y. Lattice dynamics in ferromagnetic Invar alloys, Fe3Pt and Fe65Ni35. J. Phys. Soc. Jpn. 1988, 57, 4225. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 244. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, I.; Alouani, G.M.; Dreysse, H. Perpendicular magnetic anisotropy of binary alloys: A total-energy calculation. Phys. Rev. B 2000, 62, 6475. [Google Scholar] [CrossRef]
- Shick, A.B.; Mryasov, O.N. Coulomb correlations and magnetic anisotropy in ordered L10 CoPt and FePt alloys. Phys. Rev. B 2003, 67, 172407. [Google Scholar] [CrossRef]
- Ostanin, S.; Razee, S.A.; Staunton, J.B.; Ginatempo, B.; Bruno, E. Magnetocrystalline anisotropy and compositional order in Fe0.5Pt0.5: Calculations from an ab initio electronic model. J. Appl. Phys. 2003, 93, 453. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, P.; Kjekshus, A.; Fjellvag, H.; James, P.; Nordstrom, L.; Johansson, B.; Eriksson, O. Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations. Phys. Rev. B 2001, 63, 144409. [Google Scholar] [CrossRef]
- Buschow, K.H.J.; van Engen, P.G.; Jongebreur, R. Magneto-optical properties of metallic ferromagnetic materials. J. Magn. Magn. Mater. 1983, 38, 1. [Google Scholar] [CrossRef]
- Nakata, Y. The crystal structure and magnetic properties of Fe3Pt martensite determined by first principle calculations. Mater. Trans. 2003, 44, 1706. [Google Scholar] [CrossRef]
- Cabri, L.J.; Feather, C.E. Platinum-iron alloys: A nomenclature based on a study of natural and synthetic alloys. Can. Miner. 1975, 13, 117. [Google Scholar]
- Lethole, N.L.; Ngoepe, P.E.; Chauke, H.R. First-principles studies on the structural, electronic and mechanical properties of L10 and L12 FexPt1-x alloys. IOP Conf. Ser. Mater. Sci. Eng. 2019, 655, 012044. [Google Scholar] [CrossRef]
- Mohri, T.; Chen, Y.; Kohyama, M.; Ogata, S.; Saengdeejing, A.; Bhattacharya, S.K.; Wakeda, M.; Shinzato, S.; Kimizuka, H. Mechanical properties of Fe-rich Si alloy from Hamiltonian. Npj Comput. Mater. 2017, 3, 10. [Google Scholar] [CrossRef]
- Shuttleworth. A comparative study of Oxygen and Hydrogen adsorption on strained and alloy-supported Pt (111) monolayers. Magnetochemistry 2021, 7, 101. [Google Scholar] [CrossRef]
- Skomski, R.; Coey, J.M.D. Magnetic anisotropy—How much is enough for a permanent magnet? Scr. Mater. 2016, 112, 3. [Google Scholar] [CrossRef]
- Rani, P.; Kashyap, M.K.; Singla, R.; Thakur, J.; Reshak, A.H. Magnetism and magnetocrystalline anisotropy of tetragonally distorted L10-FeNi: N alloy. J. Alloys Compd. 2020, 835, 155325. [Google Scholar] [CrossRef]
- Visokay, M.R.; Sinclair, R. Direct formation of ordered CoPt and FePt compound thin films by sputtering. Appl. Phys. Lett. 1995, 66, 1692. [Google Scholar] [CrossRef]
- Lan, T.; Ding, B.; Liu, B. Magneto-optic effect of two-dimensional materials and related applications. Nano Select 2020, 1, 298. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Salje, E. Elastic anomalies in minerals due to structural phase transitions. Eur. J. Mineral. 1998, 10, 693. [Google Scholar] [CrossRef]
- MacLaren, J.M.; Duplessis, R.R.; Stern, R.A.; Willoughby, S. First principles calculations of FePt, CoPt, Co/sub 3/Pt, and Fe/sub 3/Pt alloys. IEEE Trans. Magn. 2005, 41, 4374. [Google Scholar] [CrossRef]
- Nakamura, N.; Yoshimura, N.; Ogi, H.; Hirao, M. Elastic constants of polycrystalline L10-FePt at high temperatures. J. Appl. Phys. 2013, 114, 093506. [Google Scholar] [CrossRef]
Fe-Pt Alloys | Exp. | ||
---|---|---|---|
Pm-3m-Fe3Pt | a = 3.732 V = 51.992 | 3.73 51.90 [34] | 2.38 |
I4/mmm-Fe3Pt | a = 5.568 c = 6.758 V = 209.495 | 5.73 6.34 208.16 [35] | 0.48 |
P4/mmm-FePt | a = 3.848 c = 3.775 V = 55.893 | 3.86 3.71 55.28 [20] | 1.95 |
Pm-3m-FePt3 | a = 3.908 V = 59.691 | 3.86 57.78 [36] | 2.94 |
Structure | ΔHf (eV) | ||||
---|---|---|---|---|---|
GGA | LDA + U [37] | ||||
Pm-3m-Fe3Pt | −0.137 | 0.060 | 8.437 | 2.706 | 0.388 |
I4/mmm-Fe3Pt Exp. | −0.130 | −0.080 | 8.649 8.59 [35] | 2.744 2.72 | 0.420 0.45 |
P4/mmm-FePt Exp. Prev. | −0.350 | −0.350 | 3.24 3.24 [20] 3.23 [15] | 2.907 2.90 2.92 | 0.360 0.34 0.33 |
Pm-3m-FePt3 | −0.679 | −0.679 | 4.224 | 3.192 | 0.345 |
Structure | Direction | E (eV) | MCA (meV) | Prev. [15] | |
---|---|---|---|---|---|
P4/mmm-FePt | [001] | −15.176691 | 3.348 | - | - |
[100] | −15.173921 | 3.356 | 2.966 | 2.900 | |
[110] | −15.174319 | 3.344 | 2.761 | 2.990 | |
I4/mmm-Fe3Pt | [001] | −31.502483 | 8.0477 | - | |
[100] | −31.501119 | 8.0475 | 1.364 | ||
[110] | −31.501564 | 8.04595 | 0.910 | ||
Pm-3m-Fe3Pt | [001] | −31.370917 | 8.0333 | 0.035 | |
[100] | −31.370882 | 8.0358 | - | ||
[110] | −31.370507 | 8.0356 | 0.375 | ||
Pm-3m-FePt3 | [001] | −28.304619 | 3.7566 | 0.048 | |
[100] | −28.304667 | 3.7569 | - | ||
[110] | −28.304612 | 3.7567 | 0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lethole, N.; Ngoepe, P.; Chauke, H. Compositional Dependence of Magnetocrystalline Anisotropy, Magnetic Moments, and Energetic and Electronic Properties on Fe-Pt Alloys. Materials 2022, 15, 5679. https://doi.org/10.3390/ma15165679
Lethole N, Ngoepe P, Chauke H. Compositional Dependence of Magnetocrystalline Anisotropy, Magnetic Moments, and Energetic and Electronic Properties on Fe-Pt Alloys. Materials. 2022; 15(16):5679. https://doi.org/10.3390/ma15165679
Chicago/Turabian StyleLethole, Ndanduleni, Phuti Ngoepe, and Hasani Chauke. 2022. "Compositional Dependence of Magnetocrystalline Anisotropy, Magnetic Moments, and Energetic and Electronic Properties on Fe-Pt Alloys" Materials 15, no. 16: 5679. https://doi.org/10.3390/ma15165679
APA StyleLethole, N., Ngoepe, P., & Chauke, H. (2022). Compositional Dependence of Magnetocrystalline Anisotropy, Magnetic Moments, and Energetic and Electronic Properties on Fe-Pt Alloys. Materials, 15(16), 5679. https://doi.org/10.3390/ma15165679