The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth—In Vitro Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- A contactless measurement procedure with a high-resolution scanner;
- Modeling the abutment with particular emphasis on the preparation zone;
- Modeling the crown in the internal and marginal area with particular emphasis on the chamfer area;
- Using a software tool to determine, qualitatively and quantitatively, errors in fitting the interior of the crown to the reference abutment model.
5. Conclusions
- The developed method of the accuracy of mapping the shape of crowns in relation to clinical prosthetic abutments allowed the evaluation and comparison of the constructions made in digital technologies.
- For Ti6Al4V crowns made with SLM, a slightly better fit was observed in the internal and marginal areas than in the case of milling.
- Regardless of the material and manufacturing technology, a better mapping of the crown shape in relation to the abutment was observed in the case of a molar than for a premolar.
- Based on the conducted tests, it can be concluded that the tightness of the prosthetic crowns made in the CAD/CAM system from Ti6Al4V alloy in SLM and the milling meets the clinical requirements.
- The implemented methodology for the evaluation of prosthetic crowns allows the use of test results in the supply procedures of individual patients in terms of metrological parameters and biomechanical conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bojko, Ł.; Ryniewicz, A.M.; Ryniewicz, W. Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials 2022, 15, 3497. [Google Scholar] [CrossRef] [PubMed]
- Rykiss, L.; Haddad, B. Triceram on Titanium: A New Frontier in Restorative Dentistry. Oral Health 2012, 102, 94. [Google Scholar]
- Dolev, E.; Bitterman, Y.; Meirowitz, A. Comparison of marginal fit between CAD-CAM and hot-press lithium disilicate crowns. J. Prosthet. Dent. 2019, 121, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.-H.; Min, B.K.; Lee, D.-H.; Kwon, T.-Y. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. J. Prosthet. Dent. 2019, 122, 475–481. [Google Scholar] [CrossRef]
- Kara, R. Comparison of marginal and internal fit of different CAD/CAM copings. Int. J. Dent. Sci. 2020, 8, 105–111. [Google Scholar] [CrossRef]
- Surowiecki, D.; Szerszeń, M.; Wróbel-Bednarz, K.; Walczyk, A. Compatibility of the digital design of prosthetic crowns with restorations made in the technology of selective laser sintering of metal powders. Prosthodontics 2020, 70, 132–143. [Google Scholar] [CrossRef]
- Ferrini, F.; Sannino, G.; Chiola, C.; Capparé, P.; Gastaldi, G.; Gherlone, E.F. Influence of Intra-Oral Scanner (I.O.S.) on The Marginal Accuracy of CAD/CAM Single Crowns. Int. J. Environ. Res. Public Health 2019, 16, 544. [Google Scholar] [CrossRef] [Green Version]
- Uriciuc, W.A.; Vermesan, H.; Tiuc, A.E.; Ilea, A.; Bosca, A.B.; Popa, C.O. Casting Over Metal Method Used in Manufacturing Hybrid Cobalt-Chromium Dental Prosthetic Frameworks Assembles. Materials 2021, 14, 539. [Google Scholar] [CrossRef]
- Pacquet, W.; Tapie, L.; Mawussi, B.; Boitelle, P. Volumetric and dimensional accuracy assessment of CAD-CAM–manufactured dental prostheses from different materials. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
- Anzai, M.; Kumasaka, T.; Inoue, E.; Seimiya, K.; Kawanishi, N.; Hayakawa, T.; Ohkubo, C.; Miura, H.; Hoshi, N.; Kimoto, K. Application of multi-directional forged titanium for prosthetic crown fabrication by CAD/CAM. Dent. Mater. J. 2021, 40, 1049–1054. [Google Scholar] [CrossRef]
- Kayikci, O.; Ates, S.M. Comparison of marginal and internal fit of three-unit implant-supported fixed prosthetic substructures fabricated using CAD/CAM systems. Clin. Oral Investig. 2021, 26, 1–9. [Google Scholar] [CrossRef]
- Nilsson, S.; Stenport, V.F.; Nilsson, M.; Göthberg, C. A retrospective clinical study of fixed tooth- and implant-supported prostheses in titanium and cobalt-chromium-ceramic: 5–9-year follow-up. Clin. Oral Investig. 2022, 1–7. [Google Scholar] [CrossRef]
- Alsterstål-Englund, H.; Moberg, L.-E.; Petersson, J.; Smedberg, J.-I. A retrospective clinical evaluation of extensive tooth-supported fixed dental prostheses after 10 years. J. Prosthet. Dent. 2021, 125, 65–72. [Google Scholar] [CrossRef]
- Wu, M.-J.; Zou, L.-D.; Xu, W.-H.; Zhang, X.-H. Evaluation of short-term clinical therapeutic efficiency of computer aided design and manufacturing titanium-ceramic-fixed partial dentures for implant-supported restoration in posterior region. J. Peking Univ. Health Sci. 2013, 45, 803–806. [Google Scholar]
- DeGirmenci, K.; Saridag, S. Influence of anodized titanium abutment backgrounds on the color parameters of different zirconia materials. Am. J. Dent. 2021, 34, 39–43. [Google Scholar]
- Berg, E.; Nesse, H.; Skavland, R.J.; Liu, Q.; Bøe, O.E. Three-year split-mouth randomized clinical comparison between crowns fabricated in a titanium-zirconium and a gold-palladium alloy. Int. J. Prosthodont. 2008, 21, 312–318. [Google Scholar]
- Boeckler, A.F.; Lee, H.; Stadler, A.; Setz, J.M. Prospective observation of CAD/CAM titanium ceramic single crowns: A three-year follow up. J. Prosthet. Dent. 2009, 102, 290–297. [Google Scholar] [CrossRef]
- Boeckler, A.F.; Lee, H.; Psoch, A.; Setz, J.M. Prospective Observation of CAD/CAM Titanium-Ceramic-Fixed Partial Dentures: 3-Year Follow-Up. J. Prosthodont. 2010, 19, 592–597. [Google Scholar] [CrossRef]
- Hey, J.; Beuer, F.; Bensel, T.; Boeckler, A.F. Single crowns with CAD/CAM-fabricated copings from titanium: 6-year clinical results. J. Prosthet. Dent. 2014, 112, 150–154. [Google Scholar] [CrossRef]
- Ryniewicz, A.M.; Bojko, Ł.; Ryniewicz, W.I. Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions. Acta. Bioeng. Biomech. 2016, 18, 121–127. [Google Scholar] [CrossRef]
- Song, D.-B.; Han, M.-S.; Kim, S.-C.; Ahn, J.; Im, Y.-W.; Lee, H.-H. Influence of Sequential CAD/CAM Milling on the Fitting Accuracy of Titanium Three-Unit Fixed Dental Prostheses. Materials 2021, 14, 1401. [Google Scholar] [CrossRef] [PubMed]
- Tamac, E.; Gurel, K.; Toksavul, S.; Toman, M. In vitro marginal and internal adaptation of metal-ceramic crowns with cobalt-chrome and titanium framework fabricated with CAD/CAM and casting technique. Niger. J. Clin. Pract 2019, 22, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Renne, W.; McGill, S.T.; Forshee, K.V.; DeFee, M.R.; Mennito, A.S. Predicting marginal fit of CAD/CAM crowns based on the presence or absence of common preparation errors. J. Prosthet. Dent. 2012, 108, 310–315. [Google Scholar] [CrossRef]
- Litzenburger, A.P.; Hickel, R.; Richter, M.J.; Mehl, A.C.; Probst, F.A. Fully automatic CAD design of the occlusal morphology of partial crowns compared to dental technicians’ design. Clin. Oral Investig. 2013, 17, 491–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.-B.; Shang, H.-T.; He, L.-S.; Bo, B.; Liu, G.-C.; Liu, Y.-P.; Zhao, J.-L. Accurate Reconstruction of Discontinuous Mandible Using a Reverse Engineering/Computer-Aided Design/Rapid Prototyping Technique: A Preliminary Clinical Study. J. Oral Maxillofac. Surg. 2010, 68, 2115–2121. [Google Scholar] [CrossRef]
- Örtorp, A.; Jönsson, D.; Mouhsen, A.; von Steyern, P.V. The fit of cobalt–chromium three-unit fixed dental prostheses fabricated with four different techniques: A comparative in vitro study. Dent. Mater. 2011, 27, 356–363. [Google Scholar] [CrossRef]
- Akçin, E.T.; Güncü, M.B.; Aktaş, G.; Aslan, Y. Effect of manufacturing techniques on the marginal and internal fit of cobalt-chromium implant-supported multiunit frameworks. J. Prosthet. Dent. 2018, 120, 715–720. [Google Scholar] [CrossRef]
- Savencu, C.E.; Porojan, S.; Porojan, L. Analysis of Internal and Marginal fit of Metal-ceramic Crowns During Processing, Using Conventional and Digitized Technologies. Rev. Chim. 2018, 69, 1699–1701. [Google Scholar] [CrossRef]
- Paul, N.; Swamy, K.R.; Dhakshaini, M.R.; Sowmya, S.; Meravini, M. Marginal and internal fit evaluation of conventional metal-ceramic versus zirconia CAD/CAM crowns. J. Clin. Exp. Dent. 2020, 12, e31. [Google Scholar] [CrossRef]
- Li, R.; Xu, T.; Wang, Y.; Sun, Y. Accuracy of zirconia crowns manufactured by stereolithography with an occlusal full-supporting structure: An in vitro study. J. Prosthet. Dent. 2022. [Google Scholar] [CrossRef]
- Wang, W.; Yu, H.; Liu, Y.; Jiang, X.; Gao, B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J. Prosthet. Dent. 2019, 121, 285–291. [Google Scholar] [CrossRef]
- Daou, E.E.; Ounsi, H.; Özcan, M.; Husain, N.A.-H.; Salameh, Z. Marginal and internal fit of pre-sintered Co-Cr and zirconia 3-unit fixed dental prostheses as measured using microcomputed tomography. J. Prosthet. Dent. 2018, 120, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Ryniewicz, W.; Ryniewicz, A.M.; Bojko, Ł. Modeling crowns and assessment of the accuracy of mapping the shape of prosthetic abutments. Prz. Elektrotech. 2014, 90, 146–149. [Google Scholar] [CrossRef]
- Nicoll, R.J.; Sun, A.; Haney, S.; Turkyilmaz, I. Precision of fit between implant impression coping and implant replica pairs for three implant systems. J. Prosthet. Dent. 2013, 109, 37–43. [Google Scholar] [CrossRef]
- Gajdus, P.; Niedźwiecki, T.; Hędzelek, W. Selected digital technologies used to manufacture metal copings of fixed partial dentures. Protet. Stomatol. 2014, 64, 5–10. [Google Scholar] [CrossRef]
- Schaefer, O.; Watts, D.C.; Sigusch, B.W.; Kuepper, H.; Guentsch, A. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: A three-dimensional analysis of accuracy and reproducibility. Dent. Mater. 2012, 28, 320–326. [Google Scholar] [CrossRef]
- Rungruanganunt, P.; Kelly, J.R.; Adams, D.J. Two imaging techniques for 3D quantification of pre-cementation space for CAD/CAM crowns. J. Dent. 2010, 38, 995–1000. [Google Scholar] [CrossRef]
- Moris, I.C.M.; Monteiro, S.B.; Martins, R.; Ribeiro, R.F.; Gomes, E.A. Influence of Manufacturing Methods of Implant-Supported Crowns on External and Internal Marginal Fit: A Micro-CT Analysis. BioMed Res. Int. 2018, 2018, 5049605. [Google Scholar] [CrossRef] [Green Version]
- Ryniewicz, W.; Ryniewicz, A.M.; Bojko, Ł. The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape. Measurement 2016, 91, 620–627. [Google Scholar] [CrossRef]
- Ryniewicz, W.; Ryniewicz, A.M.; Bojko, Ł. Evaluation of tightness prosthetic crowns depending on the technology of their execution. Prz. Elektrotech. 2015, 91, 45–48. [Google Scholar] [CrossRef]
- Ryniewicz, W. Modeling and Construction Optimization of Prosthetic Bridges in the Lateral Part of the Mandible. Ph.D. Thesis, Jagiellonian University Medical College, Krakow, Poland, 2008. [Google Scholar]
- De Francesco, M.; Stellini, E.; Granata, S.; Mazzoleni, S.; Ludovichetti, F.S.; Monaco, C.; Di Fiore, A. Assessment of Fit on Ten Screw-Retained FrameworksRealized through Digital Full-Arch Implant Impression. Appl. Sci. 2021, 11, 5617. [Google Scholar] [CrossRef]
- Dahl, B.E.; Dahl, J.E.; Rønold, H.J. Digital evaluation of marginal and internal fit of single-crown fixed dental prostheses. Eur. J. Oral Sci. 2018, 126, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-S.; Peng, Y.-T.; Hung, W.-L.; Hsu, M.-L. Evaluation of marginal adaptation of Co Cr Mo metal crowns fabricated by traditional method and computer-aided technologies. J. Dent. Sci. 2019, 14, 288–294. [Google Scholar] [CrossRef]
- Kim, K.-B.; Kim, W.-C.; Kim, H.-Y.; Kim, J.-H. An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. Dent. Mater. 2013, 29, e91–e96. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhang, L.; Zhu, J.; Zhang, X. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. J. Prosthet. Dent. 2015, 113, 623–627. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, L.; Zhu, J.; Zhao, Y.; Zhang, X. Clinical Marginal and Internal Fit of Crowns Fabricated Using Different CAD/CAM Technologies. J. Prosthodont. 2015, 24, 291–295. [Google Scholar] [CrossRef]
Technology of Manufacturing Crowns | Premolar 15 | Molar 36 | |||
---|---|---|---|---|---|
SLM | Milling | SLM | Milling | ||
The accuracy deviations of mapping the shape of crowns, mm | Mean positive deviations | 0.107 | 0.110 | 0.091 | 0.096 |
Mean negative deviations | −0.039 | −0.048 | −0.033 | −0.038 | |
Standard deviation | 0.068 | 0.063 | 0.056 | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryniewicz, W.; Bojko, Ł.; Ryniewicz, A.M. The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth—In Vitro Studies. Materials 2022, 15, 5835. https://doi.org/10.3390/ma15175835
Ryniewicz W, Bojko Ł, Ryniewicz AM. The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth—In Vitro Studies. Materials. 2022; 15(17):5835. https://doi.org/10.3390/ma15175835
Chicago/Turabian StyleRyniewicz, Wojciech, Łukasz Bojko, and Anna M. Ryniewicz. 2022. "The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth—In Vitro Studies" Materials 15, no. 17: 5835. https://doi.org/10.3390/ma15175835
APA StyleRyniewicz, W., Bojko, Ł., & Ryniewicz, A. M. (2022). The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth—In Vitro Studies. Materials, 15(17), 5835. https://doi.org/10.3390/ma15175835