Salt Scaling Resistance of Variable w/c Ratio Air-Entrained Concretes Modified with Polycarboxylates as a Proper Consequence of Air Void System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement
2.1.2. Aggregates
2.1.3. Chemical Admixtures
2.2. Mix Proportion and Its Preparation
2.3. Concrete Tests
2.3.1. Concrete Mix Tests
2.3.2. Hardened Concrete Tests
Scaling Test
Air Void Parameters (AVP)
3. Results
3.1. The Results of Concrete Mix Tests
3.2. The Results of Hardened Concretes Tests
3.2.1. Salt Scaling
3.2.2. The Air Void Parameters
4. Discussion
4.1. The Influence of w/c on the Scaling Resistance
4.2. Assessment of Resistance to Scaling in the Light of AVP
5. Conclusions
- The w/c variability in the range of 0.53 ÷ 0.30 determined in the test program made it possible to obtain AC with variable resistance to scaling from unacceptable to very good.
- Liquefaction with MP did not affect the w/c limit values, enabling the obtaining of concretes resistant to scaling. They are, respectively, 0.35 in NAC and 0.50 in AC of Vp = 5.5 ± 0.5.
- Resistance to scaling in concrete modified with polycarboxylates grows with a decrease in w/c. A more significant effect can be observed in NAC, because air entrainment is an equally important factor in AC.
- MPs changed the AVS of AC; however, they did not affect their resistance to scaling. As a result of an increase in the SP content, at a constant air content, with a decrease in w/c in both the NAC and the AC, the entrained-air content decreases against the unfavorable entrapped air.
- The commonly used criterion for ensuring the frost resistance of AC in the range of AVP, L ≤ 0.200 mm and A300 ≥ 1.5%, requires supplementing with the minimum value of the w/c ≤ 0.50.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valenza, J.J.; Scherer, G.W. A review of salt scaling: I. Phenomenology. Cem. Concr. Res. 2007, 37, 1007–1021. [Google Scholar] [CrossRef]
- Valenza, J.J.; Scherer, G.W. A review of salt scaling: II. Mechanisms. Cem. Concr. Res. 2007, 37, 1022–1034. [Google Scholar] [CrossRef]
- Fagerlund, G. Frost Destruction of Concrete—A Study of the Validity of Different Mechanisms. Nord. Concr. Res. 2018, 58, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Fagerlund, G. Service Life with Regard to Frost Attack—A Probabilistic Approach. In Durability of Building Materials and Components 8; NRC Researcg Press: Ottawa, ON, Canada, 1999; pp. 1268–1279. [Google Scholar]
- Pigeon, M.; Marchand, J.; Pleau, R. Frost resistant concrete. Constr. Build. Mater. 1996, 10, 339–348. [Google Scholar] [CrossRef]
- Pleau, R.; Pigeon, M. Durability of Concrete in Cold Climates; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- ACI201.2R-16. Guide to Durable Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2016. [Google Scholar]
- Pigeon, M.; Talbot, C.; Marchand, J.; Hornain, H. Surface microstructure and scaling resistance of concrete. Cem. Concr. Res. 1996, 26, 1555–1566. [Google Scholar] [CrossRef]
- Powers, T.C. The Properties of Fresh Concrete; Road Research Laboratory: Crowthorne, UK, 1969. [Google Scholar]
- Tsang, C.; Shehata, M.; Lotfy, A. Optimizing a Test Method to Evaluate Resistance of Pervious Concrete to Cycles of Freezing and Thawing in the Presence of Different Deicing Salts. Materials 2016, 9, 878. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.C.; Hansen, W. Freezing characteristics of air-entrained concrete in the presence of deicing salt. Cem. Concr. Res. 2015, 74, 10–18. [Google Scholar] [CrossRef]
- Besheli, A.E.; Samimi, K.; Nejad, F.M.; Darvishan, E. Improving concrete pavement performance in relation to combined effects of freeze-thaw cycles and de-icing salt. Constr. Build. Mater. 2021, 277, 122273. [Google Scholar] [CrossRef]
- Liu, Z.C.; Hansen, W. Freeze-thaw durability of high strength concrete under deicer salt exposure. Constr. Build. Mater. 2016, 102, 478–485. [Google Scholar] [CrossRef]
- Crumpton, C.F.; Jayaprakash, G.P. Entrained air voids in concrete help prevent salt damage. Civ. Eng. 1982, 52, 17. [Google Scholar]
- Kang, Y.; Hansen, W.; Borgnakke, C. Effect of air-void system on frost expansion of highway concrete exposed to deicer salt. Int. J. Pavement Eng. 2012, 13, 259–266. [Google Scholar] [CrossRef]
- Sun, Z.; Scherer, G.W. Effect of air voids on salt scaling and internal freezing. Cem. Concr. Res. 2010, 40, 260–270. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, G.G.; Pang, C.M.; Yan, X.L.; Qin, H.G. Influence of pore structures on the frost resistance of concrete. Mag. Concr. Res. 2017, 69, 271–279. [Google Scholar] [CrossRef]
- Grubesa, I.; Markovic, B.; Vracevic, M.; Tunkiewicz, M.; Szenti, I.; Kukovecz, A. Pore Structure as a Response to the Freeze/Thaw Resistance of Mortars. Materials 2019, 12, 3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, H.S.; Pappas, A.M.; Zimmerman, R.W.; Buenfeld, N.R. Effect of entrained air voids on the microstructure and mass transport properties of concrete. Cem. Concr. Res. 2011, 41, 1067–1077. [Google Scholar] [CrossRef] [Green Version]
- Gong, F.Y.; Jacobsen, S. Modeling of water transport in highly saturated concrete with wet surface during freeze/thaw. Cem. Concr. Res. 2019, 115, 294–307. [Google Scholar] [CrossRef]
- Yu, H.F.; Ma, H.X.; Yan, K. An equation for determining freeze-thaw fatigue damage in concrete and a model for predicting the service life. Constr. Build. Mater. 2017, 137, 104–116. [Google Scholar] [CrossRef]
- Mayercsik, N.P.; Vandamme, M.; Kurtis, K.E. Assessing the efficiency of entrained air voids for freeze-thaw durability through modeling. Cem. Concr. Res. 2016, 88, 43–59. [Google Scholar] [CrossRef]
- Attiogbe, E.K. Predicting freeze-thaw durability of concrete—A new approach. Aci Mater. J. 1996, 93, 457–464. [Google Scholar]
- Tayeh, B.A.; Hakamy, A.; Amin, M.; Zeyad, A.M.; Agwa, I.S. Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature. Case Stud. Constr. Mater. 2022, 16, e00951. [Google Scholar] [CrossRef]
- Adesina, A.; de Azevedo, A.R.; Amin, M.; Hadzima-Nyarko, M.; Agwa, I.S.; Zeyad, A.M.; Tayeh, B.A. Fresh and mechanical properties overview of alkali-activated materials made with glass powder as precursor. Clean. Mater. 2021, 3, 100036. [Google Scholar] [CrossRef]
- Kubissa, W. Air Permeability of Air-Entrained Hybrid Concrete Containing CSA Cement. Buildings 2020, 10, 119. [Google Scholar] [CrossRef]
- Hodul, J.; Zizkova, N.; Borg, R.P. The Influence of Crystalline Admixtures on the Properties and Microstructure of Mortar Containing By-Products. Buildings 2020, 10, 146. [Google Scholar] [CrossRef]
- Lazniewska-Piekarczyk, B. The influence of selected new generation admixtures on the workability, air-voids parameters and frost-resistance of self compacting concrete. Constr. Build. Mater. 2012, 31, 310–319. [Google Scholar] [CrossRef]
- Lazniewska-Piekarczyk, B. The frost resistance versus air voids parameters of high performance self compacting concrete modified by non-air-entrained admixtures. Constr. Build. Mater. 2013, 48, 1209–1220. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, J.; Huang, B. Fractal analysis of effect of air void on freeze-thaw resistance of concrete. Constr. Build. Mater. 2013, 47, 126–130. [Google Scholar] [CrossRef]
- Hasholt, M.T. Air void structure and frost resistance: A challenge to Powers’ spacing factor. Mater. Struct. 2014, 47, 911–923. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, S.H.; Niu, D.T.; Fu, Q. Quantitative evaluation of the characteristics of air voids and their relationship with the permeability and salt freeze-thaw resistance of hybrid steel-polypropylene fiber-reinforced concrete composites. Cem. Concr. Compos. 2022, 125, 104292. [Google Scholar] [CrossRef]
- Nowak-Michta, A. Additional porosity as a side effect of polycarboxylate addition and its influence on concrete’s scaling resistance. Materials 2020, 13, 316. [Google Scholar] [CrossRef] [Green Version]
- Nowak-Michta, A. Incorrect Air Void Parameters in Fly Ash Concretes. Aci Mater. J. 2017, 114, 365–374. [Google Scholar] [CrossRef]
- EN206+A2; Concrete—Specification, Performance, Production and Conformity. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2021.
- Nowak-Michta, A. An attempt to quantitatively and qualitatively differentiate the pore structure originating from air naturally present in hardened concretes and introduced by an air-entraining admixture. Road Mater. Pavement Des. 2022, 23, 701–712. [Google Scholar] [CrossRef]
- EN480-1; Concrete, Mortar and Grout—Test Methods—Part 1: Reference Concrete and Reference Mortar for Testing. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2014.
- EN12390-3; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2019.
- EN12350-2; Testing Fresh Concrete—Part 2: Slump-Test. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2019.
- EN12350-6; Testing Fresh Concrete—Part 6: Density. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2019.
- EN12350-7; Testing Fresh Concrete—Part 7: Air content—Pressure Methods. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2019.
- CEN/TS12390-9; Testing Hardened Concrete. Freeze–Thaw Resistance with De-Icing Salts—Scaling. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2019.
- EN480-11; Admixtures for Concrete, Mortar and Grout-Test Methods-Part 11: Determination of Air Void Characteristics in Hardened Concrete. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2005.
- EN12390-7; Testing Hardened Concrete—Part 7: Density of Hardened Concrete. European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2019.
- SS137244; Concrete Testing—Hardened Concrete—Scaling and Freezing. Swedish Standards Institute: Stockholm, Sweden, 2019.
- Amini, K.; Vosoughi, P.; Ceylan, H.; Taylor, P. Linking air-void system and mechanical properties to salt-scaling resistance of concrete containing slag cement. Cem. Concr. Compos. 2019, 104, 103364. [Google Scholar] [CrossRef]
Setting Time, Vicat Test (min) | Water Demand (%) | Compressive Strength (MPa) | Chemical Analyses (%) | Insoluble Residue (%) | Loss on Ignition (%) | ||
---|---|---|---|---|---|---|---|
Initial | Final | SO3 | Cl | ||||
172 | 224 | 28.7 | 60.7 | 3.02 | 0.048 | 0.55 | 3.47 |
Property | AEA | SP |
---|---|---|
Main base | Combination of natural resins and synthetic surfactants | PCE |
Specific gravity at 20 °C (g/cm3) | 1.01 | 1.07 ± 0.02 |
pH value at 20 °C | 11.0 | 4.7 ± 1 |
Chloride ion content (% mass) | ≤0.1 | <0.1 |
Alkali content (Na2Oeqiv.) (% mass) | <0.8 | ≤0.6 |
Symbol of Concrete | CEM I 42.5R (kg/m3) | w/c | SP | AEA | Paste Volume (%) | Sand 0/2 mm (kg/m3) | Gravel 2/8 mm (kg/m3) | Gravel 8/16 mm (kg/m3) |
---|---|---|---|---|---|---|---|---|
(kg/m3) | ||||||||
NAC1 | 350 | 0.53 | - | - | 30 | 717 | 458 | 688 |
AC1 | 350 | 0.53 | - | 1.05 | 30 | 717 | 458 | 688 |
NAC2 | 360 | 0.50 | 0.36 | - | 30 | 717 | 458 | 688 |
AC2 | 360 | 0.50 | 0.36 | 1.08 | 30 | 717 | 458 | 688 |
NAC3 | 383 | 0.45 | 0.57 | - | 30 | 717 | 458 | 688 |
AC3 | 383 | 0.45 | 0.57 | 1.15 | 30 | 717 | 458 | 688 |
NAC4 | 409 | 0.40 | 1.02 | - | 30 | 717 | 458 | 688 |
AC4 | 409 | 0.40 | 0.82 | 1.02 | 30 | 717 | 458 | 688 |
NAC5 | 439 | 0.35 | 1.76 | 30 | 717 | 458 | 688 | |
AC5 | 439 | 0.35 | 1.54 | 1.10 | 30 | 717 | 458 | 688 |
NAC6 | 474 | 0.30 | 2.84 | 30 | 717 | 458 | 688 | |
AC6 | 474 | 0.30 | 2.37 | 1.42 | 30 | 717 | 458 | 688 |
Concrete Quality | m56 (kg/m2) | m56/m28 | m112 (kg/m2) |
---|---|---|---|
very good | <0.1 | - | - |
good | <0.2 | - | - |
<0.5 | <2 | - | |
- | - | <0.5 | |
acceptable | <1.0 | <2 | - |
- | - | <1.0 | |
unacceptable | >1.0 | >2 | - |
- | - | >1.0 |
Symbol of Concrete | Concrete Mixes | Hardened Concretes | |||
---|---|---|---|---|---|
Slump (mm) | D (kg/m3) | Vp (%) | fc (MPa) | D (kg/m3) | |
NAC1 | 70 | 2383 | 0.8 | 48.0 | 2376 |
AC1 | 90 | 2283 | 5.8 | 36.8 | 2316 |
NAC2 | 50 | 2388 | 1.7 | 50.6 | 2408 |
AC2 | 90 | 2288 | 5.0 | 31.1 | 2228 |
NAC3 | 50 | 2390 | 2.0 | 59.6 | 2441 |
AC3 | 80 | 2295 | 5.5 | 42.1 | 2337 |
NAC4 | 70 | 2380 | 3.0 | 64.6 | 2437 |
AC4 | 50 | 2315 | 5.0 | 54.3 | 2353 |
NAC5 | 70 | 2380 | 2.6 | 73.9 | 2434 |
AC5 | 60 | 2352 | 5.4 | 59.7 | 2350 |
NAC6 | 50 | 2443 | 2.4 | 82.8 | 2377 |
AC6 | 50 | 2305 | 6.0 | 57.0 | 2363 |
Symbol of Concrete | 7 Cycles | 14 Cycles | 21 Cycles | 28 Cycles | 35 Cycles | 42 Cycles | 49 Cycles | 56 Cycles | The Quality of Concretes |
---|---|---|---|---|---|---|---|---|---|
NAC1 | 0.04 | 0.36 | 1.78 | >1 * | >1 * | >1 * | >1 * | >1 * | unacceptable |
AC1 | 0 | 0 | 0 | 0 | 0.71 | >1 * | >1 * | >1 * | unacceptable |
NAC2 | 0.09 | 0.13 | >1 * | >1 * | >1 * | >1 * | >1 * | >1 * | unacceptable |
AC2 | 0 | 0 | 0 | 0 | 0 | 0.18 | 0.40 | 0.44 | acceptable |
NAC3 | 0.09 | 0.18 | 0.53 | >1 * | >1 * | >1 * | >1 * | >1 * | unacceptable |
AC3 | 0 | 0 | 0 | 0 | 0 | 0.13 | 0.27 | 0.31 | acceptable |
NAC4 | 0 | 0 | 0 | 0.07 | 0.32 | 0.53 | >1 * | >1 * | unacceptable |
AC4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | good |
NAC5 | 0 | 0 | 0 | 0 | 0.18 | 0.40 | 0.58 | 0.71 | acceptable |
AC5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | very good |
NAC6 | 0 | 0 | 0 | 0 | 0.13 | 0.31 | 0.44 | 0.53 | acceptable |
AC6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | very good |
Symbol of Concrete | A (%) | L (mm) | α (mm−1) | A300 (%) |
---|---|---|---|---|
NAC1 | 1.76 | 0.352 | 23.06 | 0.63 |
AC1 | 7.40 | 0.101 | 40.02 | 4.28 |
NAC2 | 2.89 | 0.292 | 22.21 | 1.00 |
AC2 | 6.08 | 0.138 | 33.36 | 2.94 |
NAC3 | 2.53 | 0.311 | 22.01 | 0.57 |
AC3 | 7.34 | 0.149 | 27.60 | 2.60 |
NAC4 | 4.19 | 0.302 | 18.15 | 0.92 |
AC4 | 4.87 | 0.164 | 31.10 | 2.35 |
NAC5 | 3.65 | 0.406 | 14.36 | 0.62 |
AC5 | 6.49 | 0.165 | 27.24 | 2.59 |
NAC6 | 3.20 | 0.401 | 15.40 | 0.25 |
AC6 | 7.13 | 0.159 | 26.54 | 3.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak-Michta, A. Salt Scaling Resistance of Variable w/c Ratio Air-Entrained Concretes Modified with Polycarboxylates as a Proper Consequence of Air Void System. Materials 2022, 15, 5839. https://doi.org/10.3390/ma15175839
Nowak-Michta A. Salt Scaling Resistance of Variable w/c Ratio Air-Entrained Concretes Modified with Polycarboxylates as a Proper Consequence of Air Void System. Materials. 2022; 15(17):5839. https://doi.org/10.3390/ma15175839
Chicago/Turabian StyleNowak-Michta, Aneta. 2022. "Salt Scaling Resistance of Variable w/c Ratio Air-Entrained Concretes Modified with Polycarboxylates as a Proper Consequence of Air Void System" Materials 15, no. 17: 5839. https://doi.org/10.3390/ma15175839
APA StyleNowak-Michta, A. (2022). Salt Scaling Resistance of Variable w/c Ratio Air-Entrained Concretes Modified with Polycarboxylates as a Proper Consequence of Air Void System. Materials, 15(17), 5839. https://doi.org/10.3390/ma15175839