Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) Nanofibers: Characterization and Optimization Study on the Effect of Different Parameters on Mean Diameter Using Taguchi Design of Experiment Method
Abstract
:1. Introduction
- -
- jet initiation and elongation along a straight line;
- -
- growth of the whip instability and further elongation of the jet, which may or may not be associated with branching of the jet;
- -
2. Materials and Methods
2.1. Polymers
2.2. Electrospinning
2.3. Design and Analysis of Experimental Parameters by the Taguchi Method
3. Results and Discussion
3.1. Nanofiber Morphology and Diameter
3.2. Analysis of Variance (ANOVA)
3.3. Optimum Combination of Factors
3.4. Confirmation Experiment to Optimum Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, H.; Xu, S.; Liu, Q.; Li, T.; Luo, Y.; Sun, X. Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000048. [Google Scholar] [CrossRef]
- Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, J.H.; Salsabila, S.; Yun, C. Core-Sheath Electrospinning of Shea Butter and Cellulose Acetate to Enhance Heat Transfer in Protective Clothing. 2021. Available online: https://www.researchsquare.com/article/rs-978565/v1 (accessed on 1 June 2022).
- Osali, S.; Esfahani, H.; Dabir, F.; Aslan, P.T. Structural and electro-optical properties of electrospun Cu-Doped ZnO thin films. Solid State Sci. 2019, 98, 106038. [Google Scholar] [CrossRef]
- Cheng, Z.; Cao, J.; Kang, L.; Luo, Y.; Li, T.; Liu, W. Novel transparent nano-pattern window screen for effective air filtration by electrospinning. Mater. Lett. 2018, 221, 157–160. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Hou, Z.; Ma, P.; Yang, N.; Li, C.; Lin, J. Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo. Nano Res. 2015, 8, 1917–1931. [Google Scholar] [CrossRef]
- Sun, G.; Sun, L.; Xie, H.; Liu, J. Electrospinning of nanofibers for energy applications. Nanomaterials 2016, 6, 129. [Google Scholar] [CrossRef]
- Liu, H.; Wang, D.; Zhao, N.; Ma, J.; Gong, J.; Yang, S.; Xu, J. Application of electrospinning fibres on sound absorption in low and medium frequency range. Mater. Res. Innov. 2014, 18 (Suppl. 4), 888–891. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applicaations. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Coronas, M.; Holade, Y.; Cornu, D. Review of the Electrospinning Process and the Electro-Conversion of 5-Hydroxymethylfurfural (HMF) into Added-Value Chemicals. Materials 2022, 15, 4336. [Google Scholar] [CrossRef]
- Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. [Google Scholar] [CrossRef]
- Ghorani, B.; Tucker, N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll. 2015, 51, 227–240. [Google Scholar] [CrossRef]
- Saleem, H.; Trabzon, L.; Kilic, A.; Zaidi, S.J. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination 2020, 478, 114178. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Bae, H.-S.; Haider, A.; Selim, K.M.K.; Kang, D.-Y.; Kim, E.-J.; Kang, I.-K. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J. Polym. Res. 2013, 20, 158. [Google Scholar] [CrossRef]
- Sinha, M.K.; Das, B.; Srivastava, A.; Saxena, A. Influence of process parameters on electrospun nanofibre morphology. Asian J. Text. 2013, 3, 8. [Google Scholar] [CrossRef]
- Liu, S.; Reneker, D.H. Droplet-jet shape parameters predict electrospun polymer nanofiber diameter. Polymer 2019, 168, 155–158. [Google Scholar] [CrossRef]
- Khajavi, R.; Abbasipour, M. Controlling nanofiber morphology by the electrospinning process. In Electrospun Nanofibers; Woodhead Publishing: Sawston, UK, 2017; pp. 109–123. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Sun, G.; Zhang, G.; Liu, H.; Du, J.; Yang, S.; Bai, J.; Yang, Q. Fabrication of Au/PVP nanofiber composites byelectrospinning. J. Appl. Polym. Sci. 2007, 105, 3618–3622. [Google Scholar] [CrossRef]
- Casasola, R.; Thomas, N.L.; Trybala, A.; Georgiadou, S. Electrospun poly lactic acid (PLA) fibres: Effect of different solventsystems on fibre morphology and diameter. Polymer 2014, 55, 4728–4737. [Google Scholar] [CrossRef] [Green Version]
- Celep, G.K.; Dincer, K. Optimization of parameters for electrospinning of polyacrylonitrile nanofibers by the Taguchi method. Int. Polym. Process. 2017, 32, 508–514. [Google Scholar] [CrossRef]
- Saquing, C.D.; Manasco, J.L.; Khan, S.A. Electrospun Nanoparticle–Nanofiber Composites via a One-Step Synthesis. Small 2009, 5, 944–951. [Google Scholar] [CrossRef]
- Vats, S.; Honaker, L.W.; Frey, M.W.; Basoli, F.; Lagerwall, J.P. Electrospinning Ethanol–Water Solutions of Poly (Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior. Macromol. Mater. Eng. 2022, 307, 2100640. [Google Scholar] [CrossRef]
- Zhao, L.; Liang, X.; Ni, Z.; Zhao, H.; Ge, B.; Li, W. Covalent organic framework modified polyacrylamide electrospun nanofiber membrane as a “turn-on” fluorescent sensor for primary aliphatic amine gas. Sens. Actuators B Chem. 2022, 366, 131988. [Google Scholar] [CrossRef]
- Raja, K.; Prabhu, C.; Subramanian, K.S.; Govindaraju, K. Electrospun polyvinyl alcohol (PVA) nanofibers as carriers for hormones (IAA and GA3) delivery in seed invigoration for enhancing germination and seedling vigor of agricultural crops (groundnut and black gram). Polym. Bull. 2021, 78, 6429–6440. [Google Scholar] [CrossRef]
- Liu, L.; Gu, W.W.; Xv, W.T.; Xiao, C.F. Preparation of polyacrylamide nanofibers by electrospinning. In Advanced Materials Research; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2010; Volume 87, pp. 433–438. [Google Scholar]
- Wu, S.; Li, F.; Wang, H.; Fu, L.; Zhang, B.; Li, G. Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 2010, 51, 6203–6211. [Google Scholar] [CrossRef]
- Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.; Seyfoddin, A.; Fatihhi, S. Acrylic acid/acrylamide based hydrogels and its properties—A review. Polym. Degrad. Stab. 2020, 180, 109308. [Google Scholar] [CrossRef]
- Albetran, H.; Dong, Y.; Low, I.M. Characterization and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method. J. Asian Ceram. Soc. 2015, 3, 292–300. [Google Scholar] [CrossRef]
- Ghani, J.A.; Choudhury, I.A.; Hassan, H.H. Application of Taguchi method in the optimization of end milling parameters. J. Mater. Process. Technol. 2004, 145, 84–92. [Google Scholar] [CrossRef]
- Dong, Y.; Bhattacharyya, D. Effects of clay type, clay/compatibiliser content and matrix viscosity on the mechanical properties of polypropylene/organoclay nanocomposites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1177–1191. [Google Scholar] [CrossRef]
- Roy Ranjit, K. A Primer on Taguchi Method; VNR Publication: New York, NY, USA, 1990; pp. 7–10. [Google Scholar]
- Patra, S.N.; Easteal, A.J.; Bhattacharyya, D. Parametric study of manufacturing poly (lactic) acid nanofibrous mat by electrospinning. J. Mater. Sci. 2009, 44, 647–654. [Google Scholar] [CrossRef]
- Mohammad Khanlou, H.; Chin Ang, B.; Talebian, S.; Muhammad Afifi, A.; Andriyana, A. Electrospinning of polymethyl methacrylate nanofibers: Optimization of processing parameters using the Taguchi design of experiments. Text. Res. J. 2015, 85, 356–368. [Google Scholar] [CrossRef]
- Sadeghi, D.; Karbasi, S.; Razavi, S.; Mohammadi, S.; Shokrgozar, M.A.; Bonakdar, S. Electrospun poly (hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Veerabhadraiah, A.; Ramakrishna, S.; Angadi, G.; Venkatram, M.; Ananthapadmanabha, V.K.; NarayanaRao, N.M.H.; Munishamaiah, K. Development of polyvinyl acetate thin films by electrospinning for sensor applications. Appl. Nanosci. 2017, 7, 355–363. [Google Scholar] [CrossRef]
- Pirsalami, S.; Zebarjad, S.M.; Daneshmanesh, H. Evaluation and optimization of electrospun polyvinyl alcohol fibers via Taguchi methodology. Int. Polym. Process. 2016, 31, 503–507. [Google Scholar] [CrossRef]
- Senthil, T.; Anandhan, S. Electrospinning of non-woven poly (styrene-co-acrylonitrile) nanofibrous webs for corrosive chemical filtration: Process evaluation and optimization by Taguchi and multiple regression analyses. J. Electrost. 2015, 73, 43–55. [Google Scholar] [CrossRef]
- Elkasaby, M.; Hegab, H.A.; Mohany, A.; Rizvi, G.M. Modeling and optimization of electrospinning of polyvinyl alcohol (PVA). Adv. Polym. Technol. 2018, 37, 2114–2122. [Google Scholar] [CrossRef]
- Amini, N.; Kalaee, M.; Mazinani, S.; Pilevar, S.; Ranaei-Siadat, S.-O. Morphological optimization of electrospun polyacrylamide/MWCNTs nanocomposite nanofibers using Taguchi’s experimental design. Int. J. Adv. Manuf. Technol. 2013, 69, 139–146. [Google Scholar] [CrossRef]
- Zhao, P.; Cao, M.; Gu, H.; Gao, Q.; Xia, N.; He, Y.; Fu, J. Research on the electrospun foaming process to fabricate three-dimensional tissue engineering scaffolds. J. Appl. Polym. Sci. 2018, 135, 46898. [Google Scholar] [CrossRef]
- Nazir, A.; Khenoussi, N.; Schacher, L.; Hussain, T.; Adolphe, D.; Hekmati, A.H. Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning. RSC Adv. 2015, 5, 76892–76897. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.; Dong, C.; Sheng, J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym. Int. 2004, 53, 1704–1710. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A.G. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 2017, 77, 69–94. [Google Scholar] [CrossRef]
Parameter | Abbreviation | Units | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|
Type of polymer | P | ------- | PAAc | PAAm | PVOH |
Polymer solution concentration | C | % (w/v) | 8 | 10 | 12 |
Distance | D | cm | 10 | 14 | 18 |
Applied voltage | V | kV | 12 | 16 | 20 |
Solution feeding rate | F | mL/h | 0.1 | 0.2 | 0.3 |
Parameters | Fiber Diameter | S/N Ratio | ||||||
---|---|---|---|---|---|---|---|---|
Exp. No. | P | C | D | V | F | Mean (nm) | SD | |
E-1 | PAAc | 8 | 10 | 12 | 0.1 | 261 | 60 | −48.33 |
E-2 | PAAc | 8 | 10 | 12 | 0.2 | 273 | 55 | −48.72 |
E-3 | PAAc | 8 | 10 | 12 | 0.3 | 285 | 51 | −49.09 |
E-4 | PAAc | 10 | 14 | 16 | 0.1 | 388 | 103 | −51.77 |
E-5 | PAAc | 10 | 14 | 16 | 0.2 | 390 | 76 | −51.82 |
E-6 | PAAc | 10 | 14 | 16 | 0.3 | 420 | 79 | −52.46 |
E-7 | PAAc | 12 | 18 | 20 | 0.1 | 581 | 85 | −55.28 |
E-8 | PAAc | 12 | 18 | 20 | 0.2 | 396 | 139 | −51.95 |
E-9 | PAAc | 12 | 18 | 20 | 0.3 | 555 | 88 | −54.88 |
E-10 | PAAm | 8 | 10 | 12 | 0.1 | 156 | 18 | −43.86 |
E-11 | PAAm | 8 | 10 | 12 | 0.2 | 146 | 15 | −43.28 |
E-12 | PAAm | 8 | 10 | 12 | 0.3 | 152 | 12 | −43.63 |
E-13 | PAAm | 10 | 14 | 16 | 0.1 | 299 | 22 | −49.51 |
E-14 | PAAm | 10 | 14 | 16 | 0.2 | 317 | 42 | −50.02 |
E-15 | PAAm | 10 | 14 | 16 | 0.3 | 300 | 20 | −49.54 |
E-16 | PAAm | 12 | 18 | 20 | 0.1 | 234 | 38 | −47.38 |
E-17 | PAAm | 12 | 18 | 20 | 0.2 | 291 | 7 | −49.27 |
E-18 | PAAm | 12 | 18 | 20 | 0.3 | 318 | 39 | −50.04 |
E-19 | PVOH | 8 | 10 | 12 | 0.1 | 458 | 73 | −53.21 |
E-20 | PVOH | 8 | 10 | 12 | 0.2 | 464 | 82 | −53.33 |
E-21 | PVOH | 8 | 10 | 12 | 0.3 | 495 | 65 | −53.89 |
E-22 | PVOH | 10 | 14 | 16 | 0.1 | 398 | 8 | −51.99 |
E-23 | PVOH | 10 | 14 | 16 | 0.2 | 395 | 73 | −51.93 |
E-24 | PVOH | 10 | 14 | 16 | 0.3 | 432 | 59 | −52.71 |
E-25 | PVOH | 12 | 18 | 20 | 0.1 | 673 | 147 | −56.56 |
E-26 | PVOH | 12 | 18 | 20 | 0.2 | 662 | 53 | −56.41 |
E-27 | PVOH | 12 | 18 | 20 | 0.3 | 717 | 78 | −57.11 |
Means of Nanofiber Diameters | Standard Deviation | |||||
---|---|---|---|---|---|---|
Level | 1 | 2 | 3 | 1 | 2 | 3 |
P | 394 | 246 | 522 | 108 | 71 | 119 |
C | 299 | 371 | 492 | 133 | 49 | 173 |
D | 321 | 412 | 429 | 67 | 218 | 101 |
V | 421 | 384 | 357 | 187 | 82 | 159 |
F | 383 | 370 | 408 | 158 | 135 | 158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorkhabi, T.S.; Samberan, M.F.; Ostrowski, K.A.; Zajdel, P.; Stempkowska, A.; Gawenda, T. Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) Nanofibers: Characterization and Optimization Study on the Effect of Different Parameters on Mean Diameter Using Taguchi Design of Experiment Method. Materials 2022, 15, 5876. https://doi.org/10.3390/ma15175876
Sorkhabi TS, Samberan MF, Ostrowski KA, Zajdel P, Stempkowska A, Gawenda T. Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) Nanofibers: Characterization and Optimization Study on the Effect of Different Parameters on Mean Diameter Using Taguchi Design of Experiment Method. Materials. 2022; 15(17):5876. https://doi.org/10.3390/ma15175876
Chicago/Turabian StyleSorkhabi, Tannaz Soltanolzakerin, Mehrab Fallahi Samberan, Krzysztof Adam Ostrowski, Paulina Zajdel, Agata Stempkowska, and Tomasz Gawenda. 2022. "Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) Nanofibers: Characterization and Optimization Study on the Effect of Different Parameters on Mean Diameter Using Taguchi Design of Experiment Method" Materials 15, no. 17: 5876. https://doi.org/10.3390/ma15175876
APA StyleSorkhabi, T. S., Samberan, M. F., Ostrowski, K. A., Zajdel, P., Stempkowska, A., & Gawenda, T. (2022). Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) Nanofibers: Characterization and Optimization Study on the Effect of Different Parameters on Mean Diameter Using Taguchi Design of Experiment Method. Materials, 15(17), 5876. https://doi.org/10.3390/ma15175876