Research on Soft Rock Damage Softening Model and Roadway Deformation and Failure Characteristics
Abstract
:1. Introduction
2. Establishment of a Soft Rock Damage and Softening Model
2.1. Definition of Damage Variables
2.2. Establishment of Damage Softening Construct
3. Model Validation
3.1. Test Plan and Result Analysis
3.2. Parameter Correction of Mudstone Damage and Softening Model
3.3. Validation of the Mudstone Damage and Softening Model
4. Analysis of Deformation and Failure Characteristics of Deeply Buried Soft Rock Roadway
4.1. Project Overview
4.2. Numerical Model Establishment and Parameter Setting
4.3. Analysis of Numerical Calculation Results
4.4. Optimization of Roadway Support Scheme
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, J.; Li, X.L.; Song, Y.C.; Zhang, P.Z.; Liu, H.J. Analysis of mining roadway with large deformation of broken soft coal and research on supporting technology: A case study in Xin’an coal mine. Eng. Fail. Anal. 2021, 130, 105761. [Google Scholar] [CrossRef]
- Lu, H.F.; Zhang, Q.Z. Investigations on shear properties of soft rock joints under grouting. Rock Mech. Rock Eng. 2021, 54, 1875–1883. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wang, X.F.; Zhang, D.S.; Qin, D.D.; Wang, Y.; Wang, J.Y.; Chang, Z.C. Creep and control of the deep soft rock roadway (DSRR): Insights from Laboratory Testing and Practice in Pingdingshan Mining Area. Rock Mech. Rock Eng. 2022, 55, 363–378. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, D.L.; Fang, Q.; Yu, Q.C.; Xia, L. A physical and numerical investigation of the failure mechanism of weak rocks surrounding tunnels. Comput. Geotech. 2014, 61, 292–307. [Google Scholar] [CrossRef]
- Wang, M.Y.; Li, J.; Ma, L.J.; Huang, H.X. Study on the characteristic energy factor of the deep rock mass under weak disturbance. Rock Mech. Rock Eng. 2016, 49, 3165–3173. [Google Scholar] [CrossRef]
- Ren, C.H.; Yu, J.; Liu, S.Y.; Yao, W.; Zhu, Y.L.; Liu, X.Y. A plastic strain-induced damage model of porous rock suitable for different stress paths. Rock Mech Rock Eng. 2022, 55, 1887–1906. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.S.; Guo, J.; Zhao, H.J.; Liu, G. Study on deformation failure mechanism and support technology of deep soft rock roadway. Eng. Geol. 2020, 264, 105262. [Google Scholar] [CrossRef]
- Ren, C.H.; Yu, J.; Cai, Y.Y.; Yao, W.; Lai, Y.M.; Li, B.B. A novel constitutive model with plastic internal and damage variables for brittle rocks. Eng. Fract. Mech. 2021, 248, 107731. [Google Scholar] [CrossRef]
- Sun, C.; Ao, Y.H.; Wang, L.G. The research on strain-softening characteristics and local fracture law of deep granite roadway. Complexity 2020, 2020, 1064016. [Google Scholar] [CrossRef]
- Yang, X.J.; Wang, E.Y.; Wang, Y.J.; Gao, Y.B.; Wang, P. A study of the large deformation mechanism and control techniques for deep soft rock roadways. Sustainability 2018, 10, 1100. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Wang, W.J.; Yuan, C.; Peng, W.Q. Research on large deformation mechanism of deep roadway with dynamic pressure. Energy Sci. Eng. 2020, 8, 3348–3364. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, R.; Jiang, B.; Li, S.C.; He, M.C.; Sun, H.B.; Wang, L.; Qin, Q.; Yu, H.C.; Luan, Y.C. Study on failure mechanism of roadway with soft rock in deep coal mine and confined concrete support system. Eng. Fail. Anal. 2017, 81, 155–177. [Google Scholar] [CrossRef]
- Zhao, C.X.; Li, Y.M.; Liu, G.; Meng, X.R. Mechanism analysis and control technology of surrounding rock failure in deep soft rock roadway. Eng. Fail. Anal. 2020, 115, 104611. [Google Scholar] [CrossRef]
- Chen, S.M.; Wu, A.X.; Wang, Y.M.; Chen, X.; Yan, R.F.; Ma, H.J. Study on repair control technology of soft surrounding rock roadway and its application. Eng. Fail. Anal. 2018, 92, 443–455. [Google Scholar] [CrossRef]
- Yang, S.Q.; Chen, M.; Jing, H.W.; Chen, K.F.; Meng, B. A case study on large deformation failure mechanism of deep soft rock roadway in Xin’An coal mine, China. Eng. Geol. 2017, 217, 89–101. [Google Scholar] [CrossRef]
- Shen, B.; King, A.; Guo, H. Displacement, stress and seismicity in roadway roofs during mining-induced failure. Int. J. Rock Mech. Min. 2008, 45, 672–688. [Google Scholar] [CrossRef]
- He, M.C. Physical modeling of an underground roadway excavation in geologically 45° inclined rock using infrared thermography. Eng. Geol. 2011, 121, 165–176. [Google Scholar] [CrossRef]
- Meng, B.; Jing, H.W.; Chen, K.F.; Su, H.J. Failure mechanism and stability control of a large section of very soft roadway surrounding rock shear slip. Int. J. Min. Sci. Technol. 2013, 23, 127–134. [Google Scholar] [CrossRef]
- Li, S.C.; Wang, Q.; Wang, H.T.; Jiang, B.; Wang, D.C.; Zhang, B.; Li, Y.; Ruan, G.Q. Model test study on surrounding rock deformation and failure mechanisms of deep roadways with thick top coal. Tunn. Undergr. Space Technol. 2015, 47, 52–63. [Google Scholar] [CrossRef]
- Gao, C.; Xie, L.Z.; Xie, H.P.; He, B.; Li, C.B.; Wang, J.; Luo, Y. Coupling between the statistical damage model and permeability variation in reservoir sandstone: Theoretical analysis and verification. J. Nat. Gas. Sci. Eng. 2017, 37, 375–385. [Google Scholar] [CrossRef]
- Li, B.B.; Ren, C.H.; Wang, Z.H.; Li, J.H.; Yang, K.; Xu, J. Experimental study on damage and the permeability evolution process of methane-containing coal under different temperature conditions. J. Petrol. Sci. Eng. 2020, 184, 106509. [Google Scholar] [CrossRef]
- Tao, Y.B.; Du, H.; Zhang, R.X.; Feng, J.Z.; Deng, Z.Y. Experiment study on mechanical evolution characteristics of coal and rock under three-dimensional triaxial stress. Appl. Sci. 2022, 12, 2445. [Google Scholar] [CrossRef]
- Kang, X.S.; Liao, H.J. Bounding surface plasticity model for jointed soft rocks considering overconsolidation and structural decay. Comput. Geotech. 2019, 108, 295–307. [Google Scholar] [CrossRef]
- Yang, S.Q.; Tian, W.L.; Jing, H.W.; Huang, Y.H.; Yang, X.X.; Meng, B. Deformation and damage failure behavior of mudstone specimens under single-stage and multistage triaxial compression. Rock Mech. Rock Eng. 2019, 52, 673–689. [Google Scholar] [CrossRef]
- Yu, D.; Liu, E.L.; Sun, P.; Xiang, B.; Zheng, Q.S. Mechanical properties and binary-medium constitutive model for semi-through jointed mudstone samples. Int. J. Rock Mech. Min. 2020, 132, 104376. [Google Scholar] [CrossRef]
- Iyare, U.C.; Blake, O.O.; Ramsook, R. Modelling the failure behaviour of mudstones under high pressures. Rock Mech. Rock Eng. 2021, 54, 2815–2828. [Google Scholar] [CrossRef]
- Jing, H.W.; Yang, Y.Q.; Yang, S.Q.; Chen, W.Q. Micro-Mesoscopic Creep Damage Evolution and Failure Mechanism of Sandy Mudstone. Int. J. Geomech. 2021, 21, 04021010. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Wang, T. On creep behavior of mudstone in the Tianshui area, China. B Eng. Geol. Environ. 2022, 81, 321. [Google Scholar]
- Cao, W.G.; Zhao, H.; Li, X.A.; Zhang, Y.J. Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes. Can. Geotech. J. 2010, 47, 857–871. [Google Scholar] [CrossRef]
- Alejano, L.R.; Bobet, A. Drucker-Prager Criterion. Rock Mech. Rock Eng. 2012, 45, 995–999. [Google Scholar] [CrossRef] [Green Version]
σ3/MPa | c/MPa | φ/° | E/GPa | µ | m | F0 |
---|---|---|---|---|---|---|
3 | 2.60 | 35.06 | 3.383 | 0.28 | 2.2997 | 30.936 |
5 | 1.5271 | 38.898 | ||||
7 | 1.1341 | 41.498 | ||||
10 | 1.0869 | 45.192 |
Type | ρ/(kg·m–3) | E/GPa | ν | c/MPa | φ/(°) |
---|---|---|---|---|---|
Anchor | 7800 | 215 | 0.30 | 0.8 | 31 |
Mesh shotcrete | 2450 | 26 | 0.25 | ||
Concrete floor | 2400 | 30 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, C.; Zhou, Y.; Xiao, Y.; Zhou, X.; Zhu, C.; Xu, Y. Research on Soft Rock Damage Softening Model and Roadway Deformation and Failure Characteristics. Materials 2022, 15, 5886. https://doi.org/10.3390/ma15175886
Zeng C, Zhou Y, Xiao Y, Zhou X, Zhu C, Xu Y. Research on Soft Rock Damage Softening Model and Roadway Deformation and Failure Characteristics. Materials. 2022; 15(17):5886. https://doi.org/10.3390/ma15175886
Chicago/Turabian StyleZeng, Chunlin, Yuejin Zhou, Yuhang Xiao, Xin Zhou, Chaobin Zhu, and Yunong Xu. 2022. "Research on Soft Rock Damage Softening Model and Roadway Deformation and Failure Characteristics" Materials 15, no. 17: 5886. https://doi.org/10.3390/ma15175886
APA StyleZeng, C., Zhou, Y., Xiao, Y., Zhou, X., Zhu, C., & Xu, Y. (2022). Research on Soft Rock Damage Softening Model and Roadway Deformation and Failure Characteristics. Materials, 15(17), 5886. https://doi.org/10.3390/ma15175886