New PEDOT Derivatives Electrocoated on Silicon Nanowires Protected with ALD Nanometric Alumina for Ultrastable Microsupercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. SiNWs Electrodes
2.2. ALD of Alumina on SiNWs
2.3. Electropolymerization of EDOT and EDOT-OH
2.4. Electrochemical Measurements
3. Results and Discussions
3.1. Electropolymerizatoin on Al3@SiNWs
3.1.1. Electropolymerization of EDOT and EDOT-OH
3.1.2. Electropolymerization Mechanism of EDOT-OH
3.1.3. Effect of Surfactants SDS and SDBS
3.1.4. EDX Analysis
3.2. Characterization of PEDOT-OH in SDS and SDBS
3.2.1. Electrochemical Characterization
3.2.2. Salt Effect on PEDOT-OH Morphology
3.2.3. Scan Rate Effects on PEDOT-OH Coatings
3.3. Electrochemical Cyclability and Ageing
3.3.1. Effect of Current Densities
3.3.2. Electrochemical Cyclability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, S.; Cheng, W. Toward Soft Skin-Like Wearable and Implantable Energy Devices. Adv. Energy Mater. 2017, 7, 1700648. [Google Scholar] [CrossRef]
- An, T.; Cheng, W. Recent Progress in Stretchable Supercapacitors. J. Mater. Chem. A 2018, 6, 15478–15494. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Kang, F.; Tarascon, J.-M.; Kim, J.-K. Recent Advances in Electrospun Carbon Nanofibers and Their Application in Electrochemical Energy Storage. Prog. Mater. Sci. 2016, 76, 319–380. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Bach-Toledo, L.; Hryniewicz, B.M.; Marchesi, L.F.; Dall’Antonia, L.H.; Vidotti, M.; Wolfart, F. Conducting Polymers and Composites Nanowires for Energy Devices: A Brief Review. Mater. Sci. Energy Technol. 2020, 3, 78–90. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured Conductive Polymers for Advanced Energy Storage. Chem. Soc. Rev. 2015, 44, 6684–6696. [Google Scholar] [CrossRef]
- Suriyakumar, S.; Bhardwaj, P.; Grace, A.N.; Stephan, A.M. Role of Polymers in Enhancing the Performance of Electrochemical Supercapacitors: A Review. Batter. Supercaps 2021, 4, 571–584. [Google Scholar] [CrossRef]
- Kinlen, P.J.; Mbugua, J.; Kim, Y.-G.; Jung, J.-H.; Viswanathan, S. Supercapacitors Using n and P-Type Conductive Polymers Exhibiting Metallic Conductivity. ECS Trans. 2010, 25, 157. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; You, J.; Park, M.-S.; Hossain, M.S.A.; Yamauchi, Y.; Kim, J.H. Conductive Polymers for Next-Generation Energy Storage Systems: Recent Progress and New Functions. Mater. Horiz. 2016, 3, 517–535. [Google Scholar] [CrossRef]
- Shao, W.; Jamal, R.; Xu, F.; Ubul, A.; Abdiryim, T. The Effect of a Small Amount of Water on the Structure and Electrochemical Properties of Solid-State Synthesized Polyaniline. Materials 2012, 5, 1811–1825. [Google Scholar] [CrossRef]
- Sumdani, M.G.; Islam, M.R.; Yahaya, A.N.A.; Safie, S.I. Recent Advancements in Synthesis, Properties, and Applications of Conductive Polymers for Electrochemical Energy Storage Devices: A Review. Polym. Eng. Sci. 2022, 62, 269–303. [Google Scholar] [CrossRef]
- Wu, X.; Chabot, V.L.; Kim, B.K.; Yu, A.; Berry, R.M.; Tam, K.C. Cost-Effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-Performance Supercapacitors. Electrochim. Acta 2014, 138, 139–147. [Google Scholar] [CrossRef]
- AL Shaqsi, A.Z.; Sopian, K.; Al-Hinai, A. Review of Energy Storage Services, Applications, Limitations, and Benefits. Energy Rep. 2020, 6, 288–306. [Google Scholar] [CrossRef]
- Taberna, P.L.; Simon, P.; Fauvarque, J.F. Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. J. Electrochem. Soc. 2003, 150, A292. [Google Scholar] [CrossRef]
- Chen, G.Z. Linear and Non-Linear Pseudocapacitances with or without Diffusion Control. Prog. Nat. Sci. 2021, 31, 792–800. [Google Scholar] [CrossRef]
- Aradilla, D.; Bidan, G.; Gentile, P.; Weathers, P.; Thissandier, F.; Ruiz, V.; Gómez-Romero, P.; Schubert, T.J.S.; Sahin, H.; Sadki, S. Novel Hybrid Micro-Supercapacitor Based on Conducting Polymer Coated Silicon Nanowires for Electrochemical Energy Storage. RSC Adv. 2014, 4, 26462–26467. [Google Scholar] [CrossRef]
- Xiao, Y.; Lin, J.-Y.; Tai, S.-Y.; Chou, S.-W.; Yue, G.; Wu, J. Pulse Electropolymerization of High Performance PEDOT/MWCNT Counter Electrodes for Pt-Free Dye-Sensitized Solar Cells. J. Mater. Chem. 2012, 22, 19919–19925. [Google Scholar] [CrossRef]
- Du, X.; Wang, Z. Effects of Polymerization Potential on the Properties of Electrosynthesized PEDOT Films. Electrochim. Acta 2003, 48, 1713–1717. [Google Scholar] [CrossRef]
- Sadki, S.; Chevrot, C. Electropolymerization of 3,4-Ethylenedioxythiophene, N-Ethylcarbazole and Their Mixtures in Aqueous Micellar Solution. Electrochim. Acta 2003, 48, 733–739. [Google Scholar] [CrossRef]
- Aradilla, D.; Sadki, S.; Bidan, G. Beyond Conventional Supercapacitors: Hierarchically Conducting Polymer-Coated 3D Nanostructures for Integrated on-Chip Micro-Supercapacitors Employing Ionic Liquid Electrolytes. Synth. Met. 2019, 247, 131–143. [Google Scholar] [CrossRef]
- Sun, J.; Wu, C.; Sun, X.; Hu, H.; Zhi, C.; Hou, L.; Yuan, C. Recent Progresses in High-Energy-Density All Pseudocapacitive-Electrode-Materials-Based Asymmetric Supercapacitors. J. Mater. Chem. A 2017, 5, 9443–9464. [Google Scholar] [CrossRef]
- Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017, 29, 1605336. [Google Scholar] [CrossRef] [PubMed]
- Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and Electrolytes for Advanced Supercapacitors. Adv. Mater. 2014, 26, 2219–2251. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, X.; Jin, X.; Li, T.; Ge, J.; Li, Z. A Review on Cutting Edge Technologies of Silicon-Based Supercapacitors. J. Nanomater. 2021, 2021, 6650131. [Google Scholar] [CrossRef]
- Bencheikh, Y.; Harnois, M.; Jijie, R.; Addad, A.; Roussel, P.; Szunerits, S.; Hadjersi, T.; El Hak Abaidia, S.; Boukherroub, R. High Performance Silicon Nanowires/Ruthenium Nanoparticles Micro-Supercapacitors. Electrochim. Acta 2019, 311, 150–159. [Google Scholar] [CrossRef]
- Thissandier, F.; Le Comte, A.; Crosnier, O.; Gentile, P.; Bidan, G.; Hadji, E.; Brousse, T.; Sadki, S. Highly Doped Silicon Nanowires Based Electrodes for Micro-Electrochemical Capacitor Applications. Electrochem. Commun. 2012, 25, 109–111. [Google Scholar] [CrossRef]
- Arjmand, T.; Legallais, M.; Nguyen, T.T.T.; Serre, P.; Vallejo-Perez, M.; Morisot, F.; Salem, B.; Ternon, C. Functional Devices from Bottom-Up Silicon Nanowires: A Review. Nanomaterials 2022, 12, 1043. [Google Scholar] [CrossRef]
- Oehler, F.; Gentile, P.; Baron, T.; Den Hertog, M.; Rouviere, J.; Ferret, P. The Morphology of Silicon Nanowires Grown in the Presence of Trimethylaluminium. Nanotechnology 2009, 20, 245602. [Google Scholar] [CrossRef]
- Imtiaz, S.; Amiinu, I.S.; Storan, D.; Kapuria, N.; Geaney, H.; Kennedy, T.; Ryan, K.M. Dense Silicon Nanowire Networks Grown on a Stainless-Steel Fiber Cloth: A Flexible and Robust Anode for Lithium-Ion Batteries. Adv. Mater. 2021, 33, 2105917. [Google Scholar] [CrossRef]
- Thissandier, F.; Pauc, N.; Brousse, T.; Gentile, P.; Sadki, S. Micro-Ultracapacitors with Highly Doped Silicon Nanowires Electrodes. Nanoscale Res. Lett. 2013, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Quek, G.; Roehrich, B.; Su, Y.; Sepunaru, L.; Bazan, G.C. Conjugated Polyelectrolytes: Underexplored Materials for Pseudocapacitive Energy Storage. Adv. Mater. 2021, 34, 2104206. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, Y.N.; Selvakumar, M.; Krishna Bhat, D.; Karazhanov, S.; Subash Chandrabose, R. Supercapacitor Studies of Activated Carbon Functionalized with Poly(Ethylene Dioxythiophene): Effects of Surfactants, Electrolyte Concentration on Electrochemical Properties. Mater. Lett. 2020, 273, 127978. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, W.; Liu, H.; Jian, N.; Qu, K.; Chen, S.; Xu, J. O/W Microemulsion as Electrolyte for Electro-Polymerization of 3,4-Ethylenedioxyselenophene. J. Electroanal. Chem. 2018, 813, 109–115. [Google Scholar] [CrossRef]
- Bayat, M.; Izadan, H.; Molina, B.G.; Sanchez, M.; Santiago, S.; Semnani, D.; Dinari, M.; Guirado, G.; Estrany, F.; Aleman, C. Electrochromic Self-Electrostabilized Polypyrrole Films Doped with Surfactant and Azo Dye. Polymers 2019, 11, 1757. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Wang, S.-M.; Wu, J.; Liu, X.-J. Electropolymerization of PoPD from Aqueous Solutions of Sodium Dodecyl Benzene Sulfonate at Conducting Glass Electrode. J. Appl. Polym. Sci. 2007, 104, 1928–1932. [Google Scholar] [CrossRef]
- Thissandier, F.; Gentile, P.; Brousse, T.; Bidan, G.; Sadki, S. Are Tomorrow’s Micro-Supercapacitors Hidden in a Forest of Silicon Nanotrees? J. Power Sources 2014, 269, 740–746. [Google Scholar] [CrossRef]
- Gentile, P.; Solanki, A.; Pauc, N.; Oehler, F.; Salem, B.; Rosaz, G.; Baron, T.; Hertog, M.D.; Calvo, V. Effect of HCl on the Doping and Shape Control of Silicon Nanowires. Nanotechnology 2012, 23, 215702. [Google Scholar] [CrossRef] [PubMed]
- Sadki, S.; Kham, K.; Chevrot, C. Electrochemical Characterization of Dissolved Poly(N-Alkylcarbazole) and Charge Transfer Complex of Carbazole Derivatives. Synth. Met. 1999, 101, 477–478. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of Pseudocapacitive Materials: A Brief Review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Diaz, A.F.; Castillo, J.I.; Logan, J.A.; Lee, W.-Y. Electrochemistry of Conducting Polypyrrole Films. J. Electroanal. Chem. Interfacial Electrochem. 1981, 129, 115–132. [Google Scholar] [CrossRef]
- Genies, E.M.; Lapkowski, M. Redox Mechanisms in Polyaniline Films. In Proceedings of the Electronic Properties of Conjugated Polymers, Kirchberg, Austria, 14–21 March 1987; Kuzmany, H., Mehring, M., Roth, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 223–227. [Google Scholar]
- Noftle, R.E.; Pletcher, D. The Mechanism of Electrodeposition of Composite Polymers Including Polypyrrole. J. Electroanal. Chem. Interfacial Electrochem. 1987, 227, 229–235. [Google Scholar] [CrossRef]
- Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The Mechanisms of Pyrrole Electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar] [CrossRef]
- Cai, L.-T.; Yao, S.-B.; Zhou, S.-M. Surfactant Effects on the Polyaniline Film. Synth. Met. 1997, 88, 209–212. [Google Scholar] [CrossRef]
- Chen, J.; Tran, T.O.; Ray, M.T.; Brunski, D.B.; Keay, J.C.; Hickey, D.; Johnson, M.B.; Glatzhofer, D.T.; Schmidtke, D.W. Effect of Surfactant Type and Redox Polymer Type on Single-Walled Carbon Nanotube Modified Electrodes. Langmuir 2013, 29, 10586–10595. [Google Scholar] [CrossRef]
- Folmer, B.M.; Kronberg, B. Effect of Surfactant−Polymer Association on the Stabilities of Foams and Thin Films: Sodium Dodecyl Sulfate and Poly(Vinyl Pyrrolidone). Langmuir 2000, 16, 5987–5992. [Google Scholar] [CrossRef]
- Valero, A. Fonctionnalisation D’électrodes de Silicium Nanostructuré Par Couches Nanométriques de Diélectrique Par ALD: Une Protection Active Versatile Pour des Micro-Supercondensateurs Ultra-Stables en Milieux Aqueux. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2020. [Google Scholar]
- Valero, A.; Mery, A.; Gaboriau, D.; Gentile, P.; Sadki, S. One Step Deposition of PEDOT–PSS on ALD Protected Silicon Nanowires: Toward Ultrarobust Aqueous Microsupercapacitors. ACS Appl. Energy Mater. 2019, 2, 436–447. [Google Scholar] [CrossRef]
- Ardizzone, S.; Fregonara, G.; Trasatti, S. “Inner” and “Outer” Active Surface of RuO2 Electrodes. Electrochim. Acta 1990, 35, 263–267. [Google Scholar] [CrossRef]
- Coustan, L.; Lannelongue, P.; Arcidiacono, P.; Favier, F. Faradaic Contributions in the Supercapacitive Charge Storage Mechanisms of Manganese Dioxides. Electrochim. Acta 2016, 206, 479–489. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietrich, M.; Paillardet, L.; Valero, A.; Deschanels, M.; Azaïs, P.; Gentile, P.; Sadki, S. New PEDOT Derivatives Electrocoated on Silicon Nanowires Protected with ALD Nanometric Alumina for Ultrastable Microsupercapacitors. Materials 2022, 15, 5997. https://doi.org/10.3390/ma15175997
Dietrich M, Paillardet L, Valero A, Deschanels M, Azaïs P, Gentile P, Sadki S. New PEDOT Derivatives Electrocoated on Silicon Nanowires Protected with ALD Nanometric Alumina for Ultrastable Microsupercapacitors. Materials. 2022; 15(17):5997. https://doi.org/10.3390/ma15175997
Chicago/Turabian StyleDietrich, Marc, Loïc Paillardet, Anthony Valero, Mathieu Deschanels, Philippe Azaïs, Pascal Gentile, and Saïd Sadki. 2022. "New PEDOT Derivatives Electrocoated on Silicon Nanowires Protected with ALD Nanometric Alumina for Ultrastable Microsupercapacitors" Materials 15, no. 17: 5997. https://doi.org/10.3390/ma15175997
APA StyleDietrich, M., Paillardet, L., Valero, A., Deschanels, M., Azaïs, P., Gentile, P., & Sadki, S. (2022). New PEDOT Derivatives Electrocoated on Silicon Nanowires Protected with ALD Nanometric Alumina for Ultrastable Microsupercapacitors. Materials, 15(17), 5997. https://doi.org/10.3390/ma15175997