Synthesis of NiAl Intermetallic Compound under Shock-Wave Extrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder Sample Preparation
2.2. The Cylindrical Recovery Ampoules for SWE
2.3. Explosive Parameters
2.4. Calculation of the Tube Collapse Parameters
2.5. Metallographic Analysis
3. Results
3.1. SWE Experiments
3.2. Study of Segment I
3.3. Study of Segment II
3.4. Study of Segment III
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazurenko, D.V.; Bataev, I.A.; Mali, V.I.; Jorge, A.M., Jr.; Stark, A.; Pyczak, F.; Ogneva, T.S.; Maliutina, I.N. Synthesis of metal-intermetallic laminate (MIL) composites with modified Al3Ti structure and in situ synchrotron X-ray diffraction analysis of sintering process. Mater. Des. 2018, 151, 8–16. [Google Scholar] [CrossRef]
- Taub, A.I.; Fleischer, R.L. Intermetallic compounds for high-temperature structural use. Science 1989, 243, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Karashaev, M.M.; Lomberg, B.S.; Bakradze, M.M.; Letnikov, M.N. On technological approaches to the creation of composite materials based on nickel monoaluminide NiAl (review). Trudy VIAM 2019, 84, 55–66. [Google Scholar]
- Kablov, Y.N.; Petrushin, N.V.; Yelyutin, Y.S. Single-Crystal Heatproof Alloys for Gas-Turbine Engines. Herald of the Bauman Moscow State Technical University: Moscow, Russia, 2011; pp. 38–52. [Google Scholar]
- Romero, A.; Rodríguez, G.P.; Marjaliza, E. Processing of intermetallic laminates by Self-Propagating High–Temperature Synthesis initiated with concentrated solar energy. J. Alloys Compd. 2022, 891, 161876. [Google Scholar] [CrossRef]
- Mitra, R.; Wanhill, R.J.H. Aerospace materials and material technologies. In Indian Institute of Metals Series; Eswara Prasad, N., Wanhill, R.J.H., Eds.; Springer: Luxembourg, 2018; Volume 1, pp. 229–245. [Google Scholar] [CrossRef]
- Yang, T.; Cao, B.X.; Zhang, T.L.; Zhao, Y.L.; Liu, W.H.; Kong, H.J.; Luan, J.H.; Kai, J.J.; Kuo, W.; Liu, C.T. Chemically complex intermetallic alloys: A new frontier for innovative structural materials. Mater. Today 2021, 52, 161–174. [Google Scholar] [CrossRef]
- Kimata, T.; Uenishi, K.; Ikenaga, A.; Kobayashi, K.F. Enhanced densification of combustion synthesized Ni-Al intermetallic compound by Si addition. Intermetallics 2003, 11, 947–952. [Google Scholar] [CrossRef]
- Yoshizaki, H.; Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Saitoh, Y.; Okamoto, Y.; Iwase, A. Modification of surface hardness for dual two-phase Ni3Al–Ni3V intermetallic compound by using energetic ion beam and subsequent thermal treatment. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 345, 22–26. [Google Scholar] [CrossRef]
- Kim, J.; Hong, S.J.; Lee, J.K.; Kim, K.B.; Lee, J.H.; Han, J.; Lee, C.; Song, G. Development of coherent-precipitate-hardened high-entropy alloys with hierarchical NiAl/Ni2TiAl precipitates in CrMnFeCoNiAlxTiy alloys. Mater. Sci. Eng. A 2021, 823, 141763. [Google Scholar] [CrossRef]
- Gulevskiy, V.A.; Antipov, V.I.; Vinogradov, L.V.; Tsurikhin, S.N.; Kolmakov, A.G.; Gulevskiy, V.V.; Prutskov, M.E. Study of a Highly Porous Composite Material Based on an Aluminum Matrix with an Ordered Cellular Structure Formed by Hollow Copper–Graphite Spherical Granules. Inorg. Mater. Appl. Res. 2022, 13, 480–484. [Google Scholar] [CrossRef]
- Haynes, J.A.; Pint, B.A.; Zhang, Y.; Wright, I.G. Comparison of the cyclic oxidation behavior of β-NiAl, β-NiPtAl and γ–γ′ NiPtAl coatings on various superalloys. Surf. Coat. Technol. 2007, 202, 730–734. [Google Scholar] [CrossRef]
- Ogneva, T.S.; Ruktuev, A.A.; Lazurenko, D.V.; Khomyakov, M.; Karmanova, A. Microstructure and mechanical properties of Ni-Al intermetallic thin coatings produced by magnetron sputtering. IOP Conf. Ser. Mater. Sci. Eng. 2020, 795, 012002. [Google Scholar] [CrossRef]
- Filimonov, V.Y.; Prokof’ev, V.G. High-temperature synthesis in activated powder mixtures under conditions of linear heating: Ni–Al system. Combust. Flame 2021, 223, 88–97. [Google Scholar] [CrossRef]
- Biswas, A. Porous NiTi by thermal explosion mode of SHS: Processing, mechanism and generation of single phase microstructure. Acta Mater. 2005, 53, 1415–1425. [Google Scholar] [CrossRef]
- Galiev, F.F.; Saikov, I.V.; Alymov, M.I.; Konovalikhin, S.V.; Sachkova, N.V.; Berbentsev, V.D. Composite rods by high-temperature gas extrusion of steel cartridges stuffed with reactive Ni–Al powder compacts: Influence of process parameters. Intermetallics 2021, 138, 107317. [Google Scholar] [CrossRef]
- Ogneva, T.S.; Bataev, I.A.; Mali, V.I.; Anisimov, A.G.; Lazurenko, D.V.; Popelyukh, A.I.; Emurlaeva, Y.Y.; Bataev, A.A.; Tanaka, S.; Yegoshin, K.D. Effect of sintering pressure and temperature on structure and properties of Ni single bond Al metal-intermetallic composites produced by SPS. Mater. Charact. 2021, 180, 11415. [Google Scholar] [CrossRef]
- Darmiani, E.; Danaee, I.; Golozar, M.A.; Toroghinejad, M.R.; Ashrafi, A.; Ahmadi, A. Reciprocating wear resistance of Al–SiC nano-composite fabricated by accumulative roll bonding process. Mater. Des. 2013, 50, 497–502. [Google Scholar] [CrossRef]
- Miyake, S.; Izumi, T.; Yamamoto, R. Effect of the Particle Size of Al/Ni Multilayer Powder on the Exothermic Characterization. Materials 2020, 13, 4394. [Google Scholar] [CrossRef]
- Chaira, D. Powder Metallurgy Routes for Composite Materials Production. In Encyclopedia of Materials: Composites; Brabazon, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 588–604. [Google Scholar] [CrossRef]
- Mohammadnezhad, M.; Shamanian, M.; Enayati, M.H.; Salehi, M. Influence of annealing temperature on the structure and properties of the nanograined NiAl intermetallic coatings produced by using mechanical alloying. Surf. Coat. Technol. 2013, 217, 64–69. [Google Scholar] [CrossRef]
- Horie, Y.; Graham, R.A.; Simonsen, I.K. Synthesis of Nickel Aluminide under High Pressure Shock Loading. Mater. Lett. 1985, 3, 354–359. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, Q.W.; Wang, B.; Zhou, B.B.; Chen, P.W.; Liu, R. Fabrication and characterization of the Ni–Al energetic structural material with high energy density and mechanical properties. J. Alloys Compd. 2020, 832, 154894. [Google Scholar] [CrossRef]
- Batsanov, S.S. Features of solid-phase transformations induced by shock compression. Russ. Chem. Rev. 2006, 75, 601–616. [Google Scholar] [CrossRef]
- Eakins, D.E.; Thadhani, N.N. Shock compression of reactive powder mixtures. Int. Mater. Rev. 2009, 54, 181–213. [Google Scholar] [CrossRef]
- Graham, R.A.; Anderson, M.U.; Horie, Y.; You, S.-K.; Holman, G.T. Pressure Measurements in Chemically Reacting Powder Mixtures with the Bauer Piezoelectric Polymer Gauge. Shock Waves 1993, 3, 79–82. [Google Scholar] [CrossRef]
- Zhukov, A.N.; Yakushev, V.A.; Ananev, S.Y.; Dobrygin, V.V.; Dolgoborodov, A.Y. Investigation of Nickel Aluminide Formed Due to Shock Loading of Aluminum–Nickel Mixtures in Flat Recovery Ampoules. Combust. Explos. Shock Waves 2018, 54, 64–71. [Google Scholar] [CrossRef]
- Jetté, F.X.; Higgins, A.J.; Goroshin, S.; Frost, D.L.; Charron-Tousignant, Y.; Radulescu, M.I. In-Situ Measurements of the Onset of Bulk Exothermicity in Shock Initiation of Reactive Powder Mixtures. J. Appl. Phys. 2011, 109, 084905. [Google Scholar] [CrossRef]
- Chiu, P.H.; Olney, K.L.; Higgins, A.; Serge, M.; Benson, D.J.; Nesterenko, V.F. The mechanism of instability and localized reaction in the explosively driven collapse of thick walled Ni-Al laminate cylinders. Appl. Phys. Lett. 2013, 102, 241912. [Google Scholar] [CrossRef]
- Ananev, S.Y.; Deribas, A.A.; Drozdov, A.A.; Dolgoborodov, A.Y.; Morozov, A.E.; Povarova, K.B.; Yankovsky, B.D. Dynamic Compaction of Ni and Al Micron Powder Blends in Cylindrical Recovery Scheme. J. Phys. Conf. Ser. 2015, 653, 12037–12040. [Google Scholar]
- Thadhani, N.N.; Work, S.; Graham, R.A.; Hammetter, W.F. Shock-induced reaction synthesis (SRS) of nickel aluminides. J. Mater. Res. 1992, 7, 1063–1075. [Google Scholar] [CrossRef]
- Yakushev, V.V.; Ananev, S.Y.; Utkin, A.V.; Zhukov, A.N.; Dolgoborodov, A.Y. Sound Velocity in Shock-Compressed Samples from a Mixture of Micro- and Nanodispersed Nickel and Aluminum Powders. Combust. Explos. Shock Waves 2019, 55, 732–738. [Google Scholar] [CrossRef]
- Sun, M.; Li, C.; Zhang, X.; Hu, X.; Hu, X.; Liu, Y. Reactivity and Penetration Performance Ni-Al and Cu-Ni-Al Mixtures as Shaped Charge Liner Materials. Materials 2018, 11, 2267. [Google Scholar] [CrossRef] [Green Version]
- Seropyan, S.; Saikov, I.; Andreev, D.; Saikova, G.; Alymov, M. Reactive Ni–Al-Based Materials: Strength and Combustion Behavior. Metals 2021, 11, 949. [Google Scholar] [CrossRef]
- Baum, F.A.; Stanyukovich, K.P.; SHekhter, B.I. Physics of Explosion; State Publishing House of Physical and Mathematical Literature: Moscow, Russia, 1959; pp. 225–362. [Google Scholar]
- Eleno, L.; Frisk, K.; Schneider, A. Assessment of the Fe–Ni–Al system. Intermetallics 2006, 14, 1276–1290. [Google Scholar] [CrossRef]
- Zhao, H.; Ning, X.; Tan, C.; Yu, X.; Nie, Z.; Sun, X.; Cui, Y.; Yang, Z.; Wang, F.; Cai, H. Influence of Al12Mg17 Additive on Performance of Cold-Sprayed Ni-Al Reactive Material. J. Therm. Spray Technol. 2019, 28, 780–793. [Google Scholar] [CrossRef]
- Yang, Z.; Ning, X.; Yu, X.; Tan, C.; Zhao, H.; Zhang, T.; Li, L.; Nie, Z.; Liu, Y. Energy Release Characteristics of Ni–Al–CuO Ternary Energetic Structural Material Processed by Cold Spraying. J. Therm. Spray Technol. 2020, 29, 1070–1081. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, C.; Yu, X.; Ning, X.; Nie, Z.; Cai, H.; Wang, F.; Cui, Y. Enhanced reactivity of Ni–Al reactive material formed by cold spraying combined with cold-pack rolling. J. Alloys Compd. 2018, 741, 883–894. [Google Scholar] [CrossRef]
Ampoule Number | Explosive | Detonation Velocity D, m/s | Explosive Ratio, r * |
---|---|---|---|
1 | Ammonite | 3750 | 1.77 |
2 | ANFO | 3150 | 2.45 |
Ampoule Number | The Tube Collapse Velocity υ, m/s | The Explosive Pressure on the Tube Wall P, GPa | Reduction Ratio of Outer Diameter of the Tube, % |
---|---|---|---|
1 | 1290 | 3.5 | 27 |
2 | 1170 | 1.9 | 32 |
Element Content, at.% | ||||
---|---|---|---|---|
No. | Cr | Fe | Ni | Al |
1 | 2.0 | 6.0 | 46.9 | 45.1 |
2 | 7.0 | 23.3 | 37.6 | 32.1 |
3 | 5.6 | 18.1 | 38.5 | 37.8 |
4 | 14.1 | 43.0 | 24.5 | 18.4 |
5 | 19.7 | 68.4 | 9.0 | 2.9 |
6 | 13.3 | 43.8 | 25.6 | 17.3 |
7 | 9.5 | 27.3 | 31.3 | 31.9 |
8 | 3.3 | 10.8 | 43.3 | 42.6 |
9 | 16.6 | 54.5 | 15.5 | 13.4 |
Element Content, at.% | ||||
---|---|---|---|---|
No. | Cr | Fe | Ni | Al |
1 | 19.9 | 70.3 | 9.8 | - |
2 | - | - | 67.6 | 32.4 |
3 | - | - | 43.7 | 56.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malakhov, A.; Shakhray, D.; Denisov, I.; Galiev, F.; Seropyan, S. Synthesis of NiAl Intermetallic Compound under Shock-Wave Extrusion. Materials 2022, 15, 6062. https://doi.org/10.3390/ma15176062
Malakhov A, Shakhray D, Denisov I, Galiev F, Seropyan S. Synthesis of NiAl Intermetallic Compound under Shock-Wave Extrusion. Materials. 2022; 15(17):6062. https://doi.org/10.3390/ma15176062
Chicago/Turabian StyleMalakhov, Andrey, Denis Shakhray, Igor Denisov, Fanis Galiev, and Stepan Seropyan. 2022. "Synthesis of NiAl Intermetallic Compound under Shock-Wave Extrusion" Materials 15, no. 17: 6062. https://doi.org/10.3390/ma15176062
APA StyleMalakhov, A., Shakhray, D., Denisov, I., Galiev, F., & Seropyan, S. (2022). Synthesis of NiAl Intermetallic Compound under Shock-Wave Extrusion. Materials, 15(17), 6062. https://doi.org/10.3390/ma15176062