An Experimental and Analytical Study on a Damage Constitutive Model of Engineered Cementitious Composites under Uniaxial Tension
Abstract
:1. Introduction
2. Test Procedure
2.1. Test Material and Specimen Production
2.2. Test Loading and Measurement
3. Test Results and Discussion
3.1. Analysis of Tensile Mechanical Properties Indicators
3.1.1. First-Cracking Strain and Cracking Stress
3.1.2. Peak Strain and Peak Stress
3.1.3. Ultimate Strain
3.1.4. Fracture Energy under Tension
3.2. Stress–Strain Curve and Damage Evolution
4. Damage Constitutive Model of ECC in Uniaxial Tension
4.1. The Proposed Damage Constitutive Model of ECC in Uniaxial Tension
4.2. Determination of Damage Model Coefficients b and A
4.3. Model Validation
5. Application of the Proposed Model to Finite Element Modelling
5.1. Establishment of Nonlinear Finite Element Model
5.2. Comparison of Simulated Results and Test Results
6. Conclusions
- (1)
- An increase in the volume content of PVA fibers could enhance the cracking strain, cracking stress, peak strain, ultimate strain, and fracture energy of ECC. An increase in the water-binder ratio could reduce the cracking stress and peak stress, but would increase the cracking strain, peak strain, ultimate strain, deformation capacity, and fracture energy;
- (2)
- The damage development process of ECC under uniaxial tension can be divided into three stages: (1) elastic undamaged stage, (2) strain hardening and stable damage stage, and (3) strain-softening and nonconverging damage stage. Adding PVA fibers in ECC could disperse the damage in ECC, and could obviously reduce the damage development rate in the strain hardening and stable damage stage. While reaching the peak stress, the damage development rate was minimized;
- (3)
- By comparing with the experimental results, the damage constitutive model and expressions of model parameters for ECC in uniaxial tension proposed in this paper, which considered the effects of PVA fiber volume content and water-binder ratios, was verified to be able to give accurate prediction of the nonlinear stress–strain relationship of ECC, reflecting the damage evolution characteristic of ECC at different stressing stages;
- (4)
- Based on FE analysis, the model in this paper can be applied to simulate the nonlinear tensile process of HSSWM-ECC. Compared with the trilinear model used by ECC, the model in this paper has higher accuracy and smaller discreteness;
- (5)
- Due to the limitations of the experimental research in this paper, the range of experimental parameters and the number of specimens should be expanded in the future to make the proposed model parameters more accurate. Secondly, the experiments under repeated loads should be explored, and the damage constitutive model of ECC under repeated loads should be proposed. Finally, it may be more meaningful and challenging to apply the proposed model to the analysis of real structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, V.C. Interface tailoring for strain-hardening PVA-ECC. ACI Mater. J. 2002, 99, 463–672. [Google Scholar]
- Li, V.C. On engineered cementitious composites (ECC)-a review of the material and its applications. J. Adv. Concr. Technol. 2003, 1, 215–230. [Google Scholar] [CrossRef]
- Li, V.C.; Horikoshi, T.; Ogawa, A.; Torigoe, S.; Saito, T. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite. ACI Mater. J. 2004, 101, 242–248. [Google Scholar] [CrossRef]
- Gaverzan, A.; Cadoni, E.; Prisco, M. Tensile behaviour of high-performance fiber-reinforced cementitious composites at high strain rates. Int. J. Impact. Eng. 2012, 45, 28–38. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Yan, C.; Wang, X.; Wang, H. Effects of Vehicle-Induced Vibrations on the Tensile Performance of Early Age PVA-ECC. Materials 2019, 17, 2652. [Google Scholar] [CrossRef]
- Li, K.F.; Yang, C.Q.; Zhao, Y.B.; Pan, Y.; Wang, G.; Zheng, Y.Y.; Xu, F. Study on the creep behavior of PVA-ECC based on fractional-differential rheological model. Constr. Build. Mater. 2020, 230, 117064. [Google Scholar] [CrossRef]
- Ding, Z.; Wen, J.; Li, X.; Fu, J.; Ji, X. Mechanical behaviour of polyvinyl alcohol-engineered cementitious composites (PVA-ECC) tunnel linings subjected to vertical load. Tunn. Undergr. Sp. Techol. 2020, 95, 103151. [Google Scholar] [CrossRef]
- Tosun, K.; Felekoğlu, B.; Baradan, B. Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading. Cement. Concrete Comp. 2004, 26, 508–520. [Google Scholar] [CrossRef]
- Liao, Q.; Yu, J.; Shi, T.; Su, Y. Mechanical behaviors and failure criteria of seawater sea-sand engineered cementitious composites under combined tension and shear. J. Build. Eng. 2022, 54, 104552. [Google Scholar] [CrossRef]
- Yu, K.Q.; Yu, J.T.; Dai, J.G.; Lu, Z.D.; Shah, S.P. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers. Constr. Build. Mater. 2018, 158, 217–227. [Google Scholar] [CrossRef]
- Aizenshtein, E.M.; Efremov, V.N. Production and use of polypropylene fibres and yarn. Fibre Chem. 2006, 38, 345–350. [Google Scholar] [CrossRef]
- Aizenshtein, E.M. World chemical fibre and thread production in 2003. Fibre Chem. 2004, 36, 467–482. [Google Scholar] [CrossRef]
- Zhang, R.; Matsumoto, K.; Hirata, T.; Ishizeki, Y.; Niwa, J. Application of PP-ECC in beam–column joint connections of rigid-framed railway bridges to reduce transverse reinforcements. Eng. Struct. 2015, 86, 146–156. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Maalej, M.; Paramasivam, P. Analytical model for tensile strainhardening and multiple-cracking behavior of hybrid fiber engineered cementitious composites. ASCE J. Mater. Civ. Eng. 2007, 19, 527–539. [Google Scholar] [CrossRef]
- Soe, K.T.; Zhang, Y.X.; Zhang, L.C. Material properties of a new hybrid fibre-reinforced engineered cementitious composite. Constr. Build. Mater. 2013, 43, 399–407. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, Y.; Ma, G.; Luo, H. Hybrid effects of steel fibers, basalt fibers and calcium sulfate on mechanical performance of PVA-ECC containing high-volume fly ash. Cement. Concrete Comp. 2019, 97, 357–368. [Google Scholar] [CrossRef]
- Tosee, S.V.R.; Faridmehr, I.; Bedon, C.; Sadowski, L.; Aalimahmoody, N.; Nikoo, M.; Nowobilski, T. Metaheuristic prediction of the compressive strength of environmentally friendly concrete modified with eggshell powder using the hybrid ANN-SFL optimization algorithm. Materials 2021, 14, 6172. [Google Scholar] [CrossRef]
- Faridmehr, I.; Bedon, C.; Huseien, G.F.; Nikoo, M.; Baghban, M.H. Assessment of mechanical properties and structural morphology of alkali-activated mortars with industrial waste materials. Sustainability 2021, 13, 2062. [Google Scholar] [CrossRef]
- Maalej, M.; Quek, S.T.; Ahmed, S.F.U.; Zhang, J.; Lin, V.W.J.; Leong, K.S. Review of potential structural applications of hybrid fiber Engineered Cementitious Composites. Constr. Build. Mater. 2012, 36, 216–227. [Google Scholar] [CrossRef]
- Shang, X.Y.; Yu, J.T.; Li, L.Z.; Lu, Z.D. Strengthening of RC Structures by Using Engineered Cementitious Composites: A Review. Sustainability 2019, 11, 3384. [Google Scholar] [CrossRef]
- Li, V.C. Performance driven design of fiber reinforced cementitious composites. In Proceedings of 4th RILEM International Symposium on Fiber; Swamy, R.N., Ed.; Chapman and Hall: London, UK, 1992; pp. 12–30. [Google Scholar]
- Kanda, T.; Lin, Z.; Li, V.C. Tensile stress-strain modeling of pseudo strain hardening cementitious composites. J. Mater. Civil. Eng. 2000, 12, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Yang, S. Experimental and numerical evaluation of confined masonry walls retrofitted with engineered cementitious composites. Eng. Struct. 2020, 207, 110249. [Google Scholar] [CrossRef]
- Kabir, M.I.; Lee, C.K.; Rana, M.M.; Zhang, Y.X. Flexural and bond-slip behaviors of engineered cementitious composites (ECC) encased steel composite beam. J. Constr. Steel. Res. 2019, 157, 229–244. [Google Scholar] [CrossRef]
- Meng, D.; Huang, T.; Zhang, Y.X.; Lee, C.K. Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients. Constr. Build. Mater. 2017, 141, 259–270. [Google Scholar] [CrossRef]
- Khan, M.; Lee, C.K.; Zhang, Y.X. Numerical modelling of engineered cementitious composites-concrete encased steel composite columns. J. Constr. Steel. Res. 2020, 170, 106082. [Google Scholar] [CrossRef]
- Kabir, M.I.; Lee, C.K.; Rana, M.M.; Zhang, Y.X. Strength enhancement of high strength steel beams by engineered cementitious composites encasement. Eng. Struct. 2020, 207, 110288. [Google Scholar] [CrossRef]
- Bai, L.; Li, Y.; Hou, C.; Zhou, T.; Cao, M. Longitudinal shear behaviour of composite slabs with profiled steel sheeting and ECC. Eng. Struct. 2020, 205, 110085.1–110085.20. [Google Scholar] [CrossRef]
- Raza, A.; Khan, Q.Z.; Ahmad, A. Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS. Adv. Civil. Eng. 2019, 3, 1–21. [Google Scholar] [CrossRef]
- Zhuang, H.; Wang, R.; Shi, P.; Chen, G. Seismic response and damage analysis of underground structures considering the effect of concrete diaphragm wall. Soil. Dyn. Earthq. Eng. 2019, 116, 278–288. [Google Scholar] [CrossRef]
- Mao, K.; Soma, Y.; Terada, K. Simulations of cohesive fracture behavior of reinforced concrete by a fracture-mechanics-based damage model. Eng. Fract. Mech. 2018, 206, 392–407. [Google Scholar] [CrossRef]
- Krahl, P.A.; Carrazedo, R.; Debs, M.E. Mechanical damage evolution in UHPFRC: Experimental and numerical investigation. Eng. Struct. 2018, 170, 63–77. [Google Scholar] [CrossRef]
- Behbahani, A.E.; Barros, J.; Ventura-Gouveia, A. Plastic-damage smeared crack model to simulate the behaviour of structures made by cement-based materials. Int. J. Solids Struct. 2015, 73, 20–40. [Google Scholar] [CrossRef]
- Cai, J.M.; Pan, J.L.; Tan, J.W.; Vandevyvere, B. Nonlinear finite-element analysis for hysteretic behavior of ECC-encased CFST columns. Structures 2020, 25, 670–682. [Google Scholar] [CrossRef]
- Chen, X.M.; Duan, J.; Qi, H.; Li, Y.G. Controls on material and mesh for structural nonlinear time-History analysis. Appl. Mech. Mater. 2014, 7, 580–583; 1564–1569. [Google Scholar] [CrossRef]
- Hu, Y.C.; Tan, Y.H.; Xi, F. Failure assessment and virtual scenario reproduction of the progressive collapse of the FIU bridge. Eng. Struct. 2021, 227, 111423. [Google Scholar] [CrossRef]
- Li, V.C.; Leung, C. Steady-state and multiple cracking of short random fiber composites. J. Eng. Mech. 1992, 118, 2246–2264. [Google Scholar] [CrossRef]
- Li, L.; Cai, Z.; Yu, K.; Zhang, Y.X.; Ding, Y. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa. Cement. Concrete Comp. 2019, 97, 202–217. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Z.; Yang, Y.; Yao, Y. Measurement and correlation of ductility and compressive strength for engineered cementitious composites (ECC) produced by binary and ternary systems of binder materials: Fly ash, slag, silica fume and cement. Constr. Build. Mater. 2014, 68, 192–198. [Google Scholar] [CrossRef]
- Hoang, N.; Carvelli, V.; Adesanya, E.; Kinnunen, P.; Illikainen, M. High-performance cementitious composite from alkali-activated ladle slag reinforced with polypropylene fibers. Cement. Concrete Comp. 2018, 90, 150–160. [Google Scholar] [CrossRef]
- Yu, K.; Ding, Y.; Liu, J.; Bai, Y. Energy dissipation characteristics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC). Cement. Concrete Comp. 2020, 106, 103459. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, J.; Wu, H.L.; Jaworska, B.; Ellis, B.R.; Li, V.C. Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC). Compos. Part B Eng. 2020, 184, 107741. [Google Scholar] [CrossRef]
- Li, K.; Zhao, D.P.; Liu, W.K.; Fan, J.J. Research on damage constitutive model of engineered cementitious composites under uniaxial tension. Eng. Mech. 2022. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.L.; Yang, G.H.; Qian, W.W.; Li, K.; Zhu, J.T. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh. Acta Mater. Compos. Sin. 2020, 37, 3220–3228. (In Chinese) [Google Scholar] [CrossRef]
- ABAQUS. ABAQUS Standard User’s Manual, Version 6.14; Dassault Systems Similia Corp.: Johnston, RI, USA, 2014. [Google Scholar]
Group Number | Cement | Silica Sand | Fly Ash | Micro-Silica Fume | Water | PVA Fiber | Superplasticizer |
---|---|---|---|---|---|---|---|
V1R3 | 1.000 | 1.500 | 2.000 | 0.073 | 0.860 | 0.029 | 0.041 |
V2R3 | 1.000 | 1.500 | 2.000 | 0.073 | 0.860 | 0.044 | 0.041 |
V3R1 | 1.000 | 1.500 | 2.000 | 0.073 | 0.738 | 0.057 | 0.041 |
V3R2 | 1.000 | 1.500 | 2.000 | 0.073 | 0.768 | 0.057 | 0.041 |
V3R3 | 1.000 | 1.500 | 2.000 | 0.073 | 0.860 | 0.057 | 0.041 |
Fiber | Length (mm) | Diameter (μm) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Elongation (%) | Density (g/cm3) |
---|---|---|---|---|---|---|
PVA | 12 | 40 | 1560 | 41 | 6.5 | 1.3 |
Group | Specimen ID | v (%) | r | εk/ (%) | σk/ MPa | εp/ (%) | σp/ MPa | εu/ (%) | Gf,N (kJ/m2) |
---|---|---|---|---|---|---|---|---|---|
V1R3 | V1R3-1 | 1 | 0.28 | 0.037 | 1.347 | 0.814 | 3.226 | 1.697 | 3.044 |
V1R3-2 | 0.039 | 2.407 | 0.274 | 3.338 | 2.211 | 3.950 | |||
V1R3-3 | 0.015 | 1.797 | 0.518 | 3.438 | 1.786 | 3.681 | |||
V1R3-4 | 0.019 | 1.960 | 0.385 | 2.740 | 1.652 | 2.976 | |||
V1R3-5 | 0.018 | 2.370 | 0.563 | 2.780 | 2.128 | 3.913 | |||
Average value | 0.025 | 1.976 | 0.511 | 3.104 | 1.895 | 3.513 | |||
Standard deviation | 0.011 | 0.439 | 0.204 | 0.324 | 0.257 | 0.471 | |||
V2R3 | V2R3-1 | 1.5 | 0.28 | 0.072 | 1.746 | 1.254 | 2.867 | 2.498 | 5.705 |
V2R3-2 | 0.050 | 1.259 | 0.575 | 3.012 | 2.485 | 4.841 | |||
V2R3-3 | 0.055 | 2.128 | 0.420 | 2.792 | 2.663 | 5.458 | |||
V2R3-4 | 0.040 | 2.166 | 1.068 | 2.997 | 2.461 | 4.761 | |||
V2R3-5 | 0.025 | 2.799 | 0.663 | 3.130 | 2.590 | 5.313 | |||
Average value | 0.048 | 2.020 | 0.796 | 2.959 | 2.539 | 5.216 | |||
Standard deviation | 0.017 | 0.569 | 0.351 | 0.132 | 0.084 | 0.405 | |||
V3R1 | V3R1-1 | 2 | 0.24 | 0.033 | 3.274 | 0.590 | 4.392 | 1.633 | 7.181 |
V3R1-2 | 0.043 | 3.508 | 0.425 | 4.067 | 3.050 | 6.808 | |||
V3R1-3 | 0.048 | 3.538 | 0.495 | 5.256 | 2.008 | 8.270 | |||
Average value | 0.041 | 3.440 | 0.503 | 4.572 | 2.230 | 7.420 | |||
Standard deviation | 0.008 | 0.144 | 0.083 | 0.613 | 0.734 | 0.757 | |||
V3R2 | V3R2-1 | 2 | 0.25 | 0.090 | 2.256 | 1.140 | 3.680 | 2.200 | 6.656 |
V3R2-2 | 0.066 | 2.960 | 0.811 | 3.949 | 2.682 | 9.934 | |||
V3R2-3 | 0.088 | 3.074 | 0.665 | 3.884 | 3.705 | 11.000 | |||
V3R2-4 | 0.040 | 2.462 | 1.476 | 3.769 | 3.350 | 10.140 | |||
V3R2-5 | 0.053 | 2.574 | 1.265 | 3.655 | 2.940 | 9.344 | |||
Average value | 0.067 | 2.665 | 1.071 | 3.787 | 2.975 | 9.415 | |||
Standard deviation | 0.022 | 0.343 | 0.331 | 0.127 | 0.583 | 1.653 | |||
V3R3 | V3R3-1 | 2 | 0.28 | 0.033 | 2.900 | 1.755 | 3.111 | 4.245 | 10.166 |
V3R3-2 | 0.092 | 2.216 | 1.908 | 3.477 | 4.298 | 12.673 | |||
V3R3-3 | 0.092 | 2.033 | 2.317 | 2.883 | 3.808 | 10.053 | |||
V3R3-4 | 0.075 | 2.256 | 2.110 | 3.309 | 4.108 | 11.764 | |||
V3R3-5 | 0.055 | 2.827 | 1.910 | 3.390 | 3.929 | 11.065 | |||
Average value | 0.069 | 2.447 | 2.000 | 3.234 | 4.077 | 11.144 | |||
Standard deviation | 0.026 | 0.391 | 0.217 | 0.238 | 0.208 | 1.104 |
Group | V1R3 | V2R3 | V3R1 | V3R2 | V3R3 |
---|---|---|---|---|---|
v (%) | 1 | 1.5 | 2 | 2 | 2 |
r | 0.28 | 0.28 | 0.24 | 0.25 | 0.28 |
b | 0.997 | 0.877 | 0.915 | 0.844 | 0.784 |
A | 0.214 | 0.132 | 0.197 | 0.151 | 0.067 |
k | 0.198 | 0.199 | 0.127 | 0.162 | 0.203 |
B | 0.138 | 0.045 | 0.004 | −0.090 | −0.090 |
C | −0.030 | 0.035 | 0.011 | 0.108 | 0.252 |
Group | v (%) | r | εk (%) | σk (MPa) | εp (%) | σp (MPa) | εu (%) | bexpt | bcalc | Aexpt | Acalc |
---|---|---|---|---|---|---|---|---|---|---|---|
V-V1R3 | 1 | 0.28 | 0.018 | 2.165 | 0.474 | 2.760 | 1.890 | 0.993 | 0.997 | 0.216 | 0.214 |
V-V2R3 | 1.5 | 0.28 | 0.033 | 2.483 | 0.864 | 3.063 | 2.526 | 0.915 | 0.877 | 0.141 | 0.132 |
V-V3R2 | 2 | 0.25 | 0.047 | 2.518 | 1.371 | 3.712 | 3.145 | 0.880 | 0.844 | 0.122 | 0.151 |
V-V3R3 | 2 | 0.28 | 0.065 | 2.542 | 2.010 | 3.349 | 4.018 | 0.816 | 0.784 | 0.046 | 0.067 |
Specimen ID | v (%) | r | Test Section Width, bc (mm) | HSSWR Spacing, d (mm) | HSSWR Diameter (mm) | HSSWR Reinforcement Ratio (%) |
---|---|---|---|---|---|---|
TC1 | 2 | 0.28 | 80 | 50 | 2.4 | 0.28 |
TC2 | 2 | 0.28 | 70 | 40 | 2.4 | 0.32 |
TC3 | 2 | 0.28 | 60 | 30 | 2.4 | 0.37 |
TC4 | 2 | 0.28 | 47 | 20 | 2.4 | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Wang, C.; Li, K.; Zhang, P.; Cong, L.; Chen, D. An Experimental and Analytical Study on a Damage Constitutive Model of Engineered Cementitious Composites under Uniaxial Tension. Materials 2022, 15, 6063. https://doi.org/10.3390/ma15176063
Zhao D, Wang C, Li K, Zhang P, Cong L, Chen D. An Experimental and Analytical Study on a Damage Constitutive Model of Engineered Cementitious Composites under Uniaxial Tension. Materials. 2022; 15(17):6063. https://doi.org/10.3390/ma15176063
Chicago/Turabian StyleZhao, Dapeng, Changjun Wang, Ke Li, Pengbo Zhang, Lianyou Cong, and Dazhi Chen. 2022. "An Experimental and Analytical Study on a Damage Constitutive Model of Engineered Cementitious Composites under Uniaxial Tension" Materials 15, no. 17: 6063. https://doi.org/10.3390/ma15176063
APA StyleZhao, D., Wang, C., Li, K., Zhang, P., Cong, L., & Chen, D. (2022). An Experimental and Analytical Study on a Damage Constitutive Model of Engineered Cementitious Composites under Uniaxial Tension. Materials, 15(17), 6063. https://doi.org/10.3390/ma15176063