Micromagnetic Study on Branch Hybridizations of Spin-Wave Modes in Ferromagnetic Nanostrips
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Pirro, P.; Verba, R.; Slavin, A.; Hillebrands, B.; Chumak, A.V. Reconfigurable nanoscale spin-wave directional coupler. Sci. Adv. 2018, 4, e1701517. [Google Scholar] [CrossRef] [PubMed]
- Klingler, S.; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A.V. Design of a spin-wave majority gate employing mode selection. Appl. Phys. Lett. 2014, 105, 152410. [Google Scholar] [CrossRef]
- Rana, B.; Otani, Y.C. Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices. Phys. Rev. Appl. 2018, 9, 014033. [Google Scholar] [CrossRef]
- Csaba, G.; Papp, Á.; Porod, W. Perspectives of using spin waves for computing and signal processing. Phys. Lett. A 2017, 381, 1471–1476. [Google Scholar] [CrossRef]
- Xing, X.; Yu, Y.; Li, S.; Huang, X. How do spin waves pass through a bend? Sci. Rep. 2013, 3, 2958. [Google Scholar] [CrossRef]
- Lee-Wong, E.; Xue, R.; Ye, F.; Kreisel, A.; van Der Sar, T.; Yacoby, A.; Du, C.R. Nanoscale Detection of Magnon Excitations with Variable Wavevectors through a Quantum Spin Sensor. Nano Lett. 2020, 20, 3284–3290. [Google Scholar] [CrossRef]
- Lan, J.; Yu, W.; Wu, R.; Xiao, J. Spin-Wave Diode. Phys. Rev. X 2015, 5, 041049. [Google Scholar] [CrossRef]
- Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, I.L.; Diény, B.; Pirro, P.; Hillebrands, B. Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 2020, 509, 166711. [Google Scholar] [CrossRef]
- Kim, S.-K. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J. Phys. D Appl. Phys. 2010, 43, 264004. [Google Scholar] [CrossRef]
- Chumak, A.V.; Serga, A.A.; Hillebrands, B. Magnonic crystals for data processing. J. Phys. D Appl. Phys. 2017, 50, 244001. [Google Scholar] [CrossRef]
- Chumak, A.V.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453–461. [Google Scholar] [CrossRef]
- Lenk, B.; Ulrichs, H.; Garbs, F.; Münzenberg, M. The building blocks of magnonics. Phys. Rep. 2011, 507, 107–136. [Google Scholar] [CrossRef]
- Stancil, D.D.; Prabhakar, A. Spin Waves: Theory and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Serga, A.A.; Chumak, A.V.; Hillebrands, B. YIG magnonics. J. Phys. D Appl. Phys. 2010, 43, 264002. [Google Scholar] [CrossRef]
- Kajiwara, Y.; Harii, K.; Takahashi, S.; Ohe, J.; Uchida, K.; Mizuguchi, M.; Umezawa, H.; Kawai, H.; Ando, K.; Takanashi, K.; et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 2010, 464, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Yamanoi, K.; Kasai, S.; Mitani, S.; Manago, T. Saturation of attenuation length of spin waves in thick permalloy films. Jpn. J. Appl. Phys. 2015, 54, 113001. [Google Scholar] [CrossRef]
- Demidov, V.E.; Demokritov, S.O. Magnonic Waveguides Studied by Microfocus Brillouin Light Scattering. IEEE Trans. Magn. 2015, 51, 2388196. [Google Scholar] [CrossRef]
- Wessels, P.; Vogel, A.; Tödt, J.N.; Wieland, M.; Meier, G.; Drescher, M. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes. Sci. Rep. 2016, 6, 22117. [Google Scholar] [CrossRef]
- Collet, M.; Gladii, O.; Evelt, M.; Bessonov, V.; Soumah, L.; Bortolotti, P.; Demokritov, S.O.; Henry, Y.; Cros, V.; Bailleul, M.; et al. Spin-wave propagation in ultra-thin YIG based waveguides. Appl. Phys. Lett. 2017, 110, 092408. [Google Scholar] [CrossRef]
- Kalinikos, B.A. Spectrum and linear excitation of spin waves in ferromagnetic films. Sov. Phys. J. 1981, 24, 718–731. [Google Scholar] [CrossRef]
- Demidov, V.E.; Demokritov, S.O.; Rott, K.; Krzysteczko, P. Mode interference and periodic self-focusing of spin waves in permalloy microstripes. Phys. Rev. B 2008, 77, 064406. [Google Scholar] [CrossRef]
- Yan, M.; Andreas, C.; Kákay, A.; García-Sánchez, F.; Hertel, R. Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission. Appl. Phys. Lett. 2011, 99, 122505. [Google Scholar] [CrossRef]
- Yan, M.; Kákay, A.; Andreas, C.; Hertel, R. Spin-Cherenkov effect and magnonic Mach cones. Phys. Rev. B 2013, 88, 220412. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, X.; Yan, M.; Zhao, W.; Zhou, Y. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction. Sci. Rep. 2016, 6, 25189. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolskiy, O.V.; Wang, Q.; Vodolazov, D.Y.; Budinska, B.; Sachser, R.; Chumak, A.V.; Huth, M.; Buzdin, A.I. Cherenkov radiation of spin waves by ultra-fast moving magnetic flux quanta. arXiv 2021, arXiv:2103.10156v1. [Google Scholar]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef]
- Leliaert, J.; Dvornik, M.; Mulkers, J.; de Clercq, J.; Milošević, M.V.; van Waeyenberge, B. Fast micromagnetic simulations on GPU-recent advances made with mumax3. J. Phys. D Appl. Phys. 2018, 51, 123002. [Google Scholar] [CrossRef]
- Guslienko, K.Y.; Demokritov, S.O.; Hillebrands, B.; Slavin, A.N. Effective dipolar boundary conditions for dynamic magnetization in thin magnetic stripes. Phys. Rev. B 2002, 66, 132402. [Google Scholar] [CrossRef]
- Guo, J.; Zeng, X.; Yan, M. Spin-wave canting induced by the Dzyaloshinskii-Moriya interaction in ferromagnetic nanowires. Phys. Rev. B 2017, 96, 014404. [Google Scholar] [CrossRef]
- Harte, K.J. Theory of Magnetization Ripple in Ferromagnetic Films. J. Appl. Phys. 1968, 39, 1503–1524. [Google Scholar] [CrossRef]
- Kalinikos, B.A.; Slavin, A.N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C Solid State Phys. 1986, 19, 7013. [Google Scholar] [CrossRef]
- Zhang, Z.; Vogel, M.; Holanda, J.; Ding, J.; Jungfleisch, M.B.; Li, Y.; Pearson, J.E.; Divan, R.; Zhang, W.; Hoffmann, A.; et al. Controlled interconversion of quantized spin wave modes via local magnetic fields. Phys. Rev. B 2019, 100, 014429. [Google Scholar] [CrossRef] [Green Version]
- Vanderveken, F.; Mulkers, J.; Leliaert, J.; van Waeyenberge, B.; Sorée, B.; Zografos, O.; Ciubotaru, F.; Adelmann, C. Confined magnetoelastic waves in thin waveguides. Phys. Rev. B 2021, 103, 054439. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, B.; Yang, M.; Zeng, X.; Yan, M. Micromagnetic Study on Branch Hybridizations of Spin-Wave Modes in Ferromagnetic Nanostrips. Materials 2022, 15, 6144. https://doi.org/10.3390/ma15176144
Yin B, Yang M, Zeng X, Yan M. Micromagnetic Study on Branch Hybridizations of Spin-Wave Modes in Ferromagnetic Nanostrips. Materials. 2022; 15(17):6144. https://doi.org/10.3390/ma15176144
Chicago/Turabian StyleYin, Binghui, Mingming Yang, Xiaoyan Zeng, and Ming Yan. 2022. "Micromagnetic Study on Branch Hybridizations of Spin-Wave Modes in Ferromagnetic Nanostrips" Materials 15, no. 17: 6144. https://doi.org/10.3390/ma15176144
APA StyleYin, B., Yang, M., Zeng, X., & Yan, M. (2022). Micromagnetic Study on Branch Hybridizations of Spin-Wave Modes in Ferromagnetic Nanostrips. Materials, 15(17), 6144. https://doi.org/10.3390/ma15176144