Electrochemical Impedance Investigation of Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanofibers Photoanodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Methods
2.2. Synthesis of TiO2 NFs and N-TiO2 NFs
2.3. Materials Characterization and EIS Analysis
3. Results and Discussion
3.1. Photoanode Morphological and Chemical Characterization
3.2. Electrochemical Impedance Investigation
3.3. Effect of N-Doping on the EIS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meddings, N.; Heinrich, M.; Overney, F.; Lee, J.-S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberšček, M. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. J. Power Sources 2020, 480, 228742. [Google Scholar]
- Mohamed, I.M.; Kanagaraj, P.; Yasin, A.S.; Iqbal, W.; Liu, C. Electrochemical impedance investigation of urea oxidation in alkaline media based on electrospun nanofibers towards the technology of direct-urea fuel cells. J. Alloy. Compd. 2020, 816, 152513. [Google Scholar]
- Wang, H.; Gaillard, A.; Hissel, D. A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles. Renew. Energy 2019, 141, 124–138. [Google Scholar]
- Gaberšček, M. Understanding Li-based battery materials via electrochemical impedance spectroscopy. Nat. Commun. 2021, 12, 1–4. [Google Scholar]
- Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G. Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem. Rev. 2021, 121, 14430–14484. [Google Scholar]
- Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.; Rettie, A.J. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [Google Scholar]
- Rudra, S.; Seo, H.W.; Sarker, S.; Kim, D.M. Simulation and electrochemical impedance spectroscopy of dye-sensitized solar cells. J. Ind. Eng. Chem. 2021, 97, 574–583. [Google Scholar]
- Hamdani, K.; Belhousse, S.; Tighilt, F.Z.; Lasmi, K.; Chaumont, D.; Sam, S. Impedance investigation of TiO2 nanotubes/nanoparticles-based dye-sensitized solar cells. J. Mater. Res. 2022, 37, 500–508. [Google Scholar]
- Omar, A.; Ali, M.S.; Abd Rahim, N. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Sol. Energy 2020, 207, 1088–1121. [Google Scholar]
- Becker, M.; Bertrams, M.-S.; Constable, E.C.; Housecroft, C.E. How reproducible are electrochemical impedance spectroscopic data for dye-sensitized solar cells? Materials 2020, 13, 1547. [Google Scholar]
- Al-Shahri, O.A.; Ismail, F.B.; Hannan, M.; Lipu, M.H.; Al-Shetwi, A.Q.; Begum, R.; Al-Muhsen, N.F.; Soujeri, E. Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. J. Clean. Prod. 2021, 284, 125465. [Google Scholar]
- Pandey, A.; Kumar, R.R.; Kalidasan, B.; Laghari, I.A.; Samykano, M.; Kothari, R.; Abusorrah, A.M.; Sharma, K.; Tyagi, V. Utilization of solar energy for wastewater treatment: Challenges and progressive research trends. J. Environ. Manag. 2021, 297, 113300. [Google Scholar]
- Perganti, D.; Giannouri, M.; Kontos, A.G.; Falaras, P. Cost-efficient platinum-free DSCs using colloidal graphite counter electrodes combined with D35 organic dye and cobalt (II/III) redox couple. Electrochim. Acta 2017, 232, 517–527. [Google Scholar]
- Mathew, R.J.; Lee, C.-P.; Tseng, C.-A.; Chand, P.K.; Huang, Y.-J.; Chen, H.-T.; Ho, K.-C.; Anbalagan, A.k.; Lee, C.-H.; Chen, Y.-T. Stoichiometry-Controlled MoxW1–xTe2 Nanowhiskers: A Novel Electrocatalyst for Pt-Free Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 34815–34824. [Google Scholar]
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar]
- Wategaonkar, S.B.; Parale, V.G.; Mali, S.S.; Hong, C.-K.; Pawar, R.P.; Maldar, P.S.; Moholkar, A.V.; Park, H.-H.; Sargar, B.M.; Mane, R.K. Influence of Tin Doped TiO2 Nanorods on Dye Sensitized Solar Cells. Materials 2021, 14, 6282. [Google Scholar]
- Mohamed, I.M.A.; Dao, V.-D.; Yasin, A.S.; Barakat, N.A.M.; Choi, H.-S. Design of an efficient photoanode for dye-sensitized solar cells using electrospun one-dimensional GO/N-doped nanocomposite SnO2/TiO2. Appl. Surf. Sci. 2017, 400, 355–364. [Google Scholar]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar]
- Li, H.; Yin, M.; Li, X.; Mo, R. Enhanced Photoelectrochemical Water Oxidation Performance in Bilayer TiO2/α-Fe2O3 Nanorod Arrays Photoanode with Cu: NiOx as Hole Transport Layer and Co− Pi as Cocatalyst. ChemSusChem 2021, 14, 2331–2340. [Google Scholar]
- Huang, Q.; Zhou, G.; Fang, L.; Hu, L.; Wang, Z.-S. TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 2145–2151. [Google Scholar]
- Lv, M.; Zheng, D.; Ye, M.; Sun, L.; Xiao, J.; Guo, W.; Lin, C. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells. Nanoscale 2012, 4, 5872–5879. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Guan, R.; Xie, M.; Dong, P.; Yang, X.; Zhang, J. Advances in electrospun TiO2 nanofibers: Design, construction, and applications. Chem. Eng. J. 2021, 431, 134343. [Google Scholar] [CrossRef]
- Yasin, A.S.; Mohamed, I.M.A.; Park, C.H.; Kim, C.S. Design of novel electrode for capacitive deionization using electrospun composite titania/zirconia nanofibers doped-activated carbon. Mater. Lett. 2018, 213, 62–66. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Motlak, M.; Fouad, H.; Barakat, N.A.M. Cobalt/Chromium Nanoparticles-Incorporated Carbon Nanofibers as Effective Nonprecious Catalyst for Methanol Electrooxidation in Alkaline Medium. Nano 2016, 11, 1650049. [Google Scholar] [CrossRef]
- Sadeghi, S.M.; Vaezi, M.; Kazemzadeh, A.; Jamjah, R. 3D networks of TiO2 nanofibers fabricated by sol-gel/electrospinning/calcination combined method: Valuation of morphology and surface roughness parameters. Mater. Sci. Eng. B 2021, 271, 115254. [Google Scholar] [CrossRef]
- Qi, W.; Yang, Y.; Du, J.; Yang, J.; Guo, L.; Zhao, L. Highly photocatalytic electrospun Zr/Ag Co-doped titanium dioxide nanofibers for degradation of dye. J. Colloid Interface Sci. 2021, 603, 594–603. [Google Scholar] [CrossRef]
- Marinho, B.A.; de Souza, S.; de Souza, A.A.U.; Hotza, D. Electrospun TiO2 nanofibers for water and wastewater treatment: A review. J. Mater. Sci. 2021, 56, 5428–5448. [Google Scholar]
- Bode-Aluko, C.A.; Pereao, O.; Kyaw, H.H.; Al-Naamani, L.; Al-Abri, M.Z.; Myint, M.T.Z.; Rossouw, A.; Fatoba, O.; Petrik, L.; Dobretsov, S. Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Mater. Sci. Eng.: B 2021, 264, 114913. [Google Scholar]
- Wei, K.; Gu, X.Y.; Chen, E.Z.; Wang, Y.Q.; Dai, Z.; Zhu, Z.R.; Kang, S.Q.; Wang, A.C.; Gao, X.P.; Sun, G.Z. Dissymmetric interface design of SnO2/TiO2 side-by-side bi-component nanofibers as photoanodes for dye sensitized solar cells: Facilitated electron transport and enhanced carrier separation. J. Colloid Interface Sci. 2021, 583, 24–32. [Google Scholar] [CrossRef]
- Simon, S.M.; George, G.; Sajna, M.; Prakashan, V.; Jose, T.A.; Vasudevan, P.; Saritha, A.; Biju, P.; Joseph, C.; Unnikrishnan, N. Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review. Appl. Surf. Sci. Adv. 2021, 6, 100173. [Google Scholar] [CrossRef]
- Vineeth, V.; Unni, G.E.; Srikrishnarka, P.; Nandan, S.; Nair, A.S. Surface modification of electrospun nanofibers of TiO2 in TiCl4 treatment for cactus-like TiO2 nanostructures. Mater. Today: Proc. 2020, 33, 1351–1355. [Google Scholar] [CrossRef]
- Golshan, M.; Osfouri, S.; Azin, R.; Jalali, T.; Moheimani, N.R. Efficiency and stability improvement of natural dye-sensitized solar cells using the electrospun composite of TiO2 nanofibres doped by the bio-Ca nanoparticles. Int. J. Energy Res. 2022, 46, 15407–15418. [Google Scholar]
- Gao, N.; Wan, T.; Xu, Z.; Ma, L.; Ramakrishna, S.; Liu, Y. Nitrogen doped TiO2/Graphene nanofibers as DSSCs photoanode. Mater. Chem. Phys. 2020, 255, 123542. [Google Scholar]
- Mahmoud, M.S.; Akhtar, M.S.; Mohamed, I.M.A.; Hamdan, R.; Dakka, Y.A.; Barakat, N.A.M. Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC. Mater. Lett. 2018, 225, 77–81. [Google Scholar] [CrossRef]
- Rajaramanan, T.; Kumara, G.R.A.; Velauthapillai, D.; Ravirajan, P.; Senthilnanthanan, M. Ni/N co-doped P25 TiO2 photoelectrodes for efficient Dye-Sensitized Solar Cells. Mater. Sci. Semicond. Processing 2021, 135, 106062. [Google Scholar] [CrossRef]
- Guo, W.; Shen, Y.; Boschloo, G.; Hagfeldt, A.; Ma, T. Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells. Electrochim. Acta 2011, 56, 4611–4617. [Google Scholar]
- Mohamed, I.M.A.; Dao, V.-D.; Yasin, A.S.; Mousa, H.M.; Mohamed, H.O.; Choi, H.-S.; Hassan, M.K.; Barakat, N.A.M. Nitrogen-doped&SnO2-incoportaed TiO2 nanofibers as novel and effective photoanode for enhanced efficiency dye-sensitized solar cells. Chem. Eng. J. 2016, 304, 48–60. [Google Scholar]
- Leung, C.M.; Chen, X.; Wang, T.; Tang, Y.; Duan, Z.; Zhao, X.; Zhou, H.; Wang, F. Enhanced Electromechanical Response in PVDF-BNBT Composite Nanofibers for Flexible Sensor Applications. Materials 2022, 15, 1769. [Google Scholar]
- Kang, D.; Li, J.; Zhang, Y. Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO2 Nanofibers Prepared by Electrospinning Applied for Lithium-Ion Battery Anodes. Materials 2020, 13, 1302. [Google Scholar]
- Yao, S.; He, Y.; Wang, Y.; Bi, M.; Liang, Y.; Majeed, A.; Yang, Z.; Shen, X. Porous N-doped carbon nanofibers assembled with nickel ferrite nanoparticles as efficient chemical anchors and polysulfide conversion catalyst for lithium-sulfur batteries. J. Colloid Interface Sci. 2021, 601, 209–219. [Google Scholar]
- Zhang, J.; Raza, S.; Wang, P.; Wen, H.; Zhu, Z.; Huang, W.; Mohamed, I.M.A.; Liu, C. Polymer brush-grafted ZnO-modified cotton for efficient oil/water separation with abrasion/acid/alkali resistance and temperature “switch” property. J. Colloid Interface Sci. 2020, 580, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, W.; Yang, B.; Zhao, X.; Rauf, M.; Mohamed, I.M.A.; Zhang, J.; Mao, Y. Facile one-pot synthesis of mesoporous g-C3N4 nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2 evolution performance. Catal. Sci. Technol. 2020, 10, 549–559. [Google Scholar] [CrossRef]
- Koli, V.B.; Mavengere, S.; Kim, J.-S. An efficient one-pot N doped TiO2-SiO2 synthesis and its application for photocatalytic concrete. Appl. Surf. Sci. 2019, 491, 60–66. [Google Scholar] [CrossRef]
- Shah, D.; Bahr, S.; Dietrich, P.; Meyer, M.; Thißen, A.; Linford, M.R. Nitrogen gas (N2), by near-ambient pressure XPS. Surf. Sci. Spectra 2019, 26, 014023. [Google Scholar] [CrossRef]
- Kusunoki, I.; Sakai, M.; Igari, Y.; Ishidzuka, S.; Takami, T.; Takaoka, T.; Nishitani-Gamo, M.; Ando, T. XPS study of nitridation of diamond and graphite with a nitrogen ion beam. Surf. Sci. 2001, 492, 315–328. [Google Scholar] [CrossRef]
- Dao, V.-D.; Choi, H.-S. Balance between the charge transfer resistance and diffusion impedance in a CNT/Pt counter electrode for highly efficient liquid-junction photovoltaic devices. Org. Electron. 2018, 58, 159–166. [Google Scholar] [CrossRef]
- Dao, V.-D.; Hoa, N.D.; Vu, N.H.; Quang, D.V.; Hieu, N.V.; Dung, T.T.N.; Viet, N.X.; Hung, C.M.; Choi, H.-S. A facile synthesis of ruthenium/reduced graphene oxide nanocomposite for effective electrochemical applications. Sol. Energy 2019, 191, 420–426. [Google Scholar] [CrossRef]
- Omelianovych, O.; Larina, L.L.; Oh, H.-J.; Park, E.; Dao, V.-D.; Choi, H.-S. Plasma-processed CoSn/RGO nanocomposite: A low-cost and sustainable counter electrode for dye-sensitized solar cells. Sol. Energy 2020, 201, 819–826. [Google Scholar] [CrossRef]
- Mohamed, I.M.; Liu, C. Chemical design of novel electrospun CoNi/Cr nanoparticles encapsulated in C-nanofibers as highly efficient material for urea oxidation in alkaline media. Appl. Surf. Sci. 2019, 475, 532–541. [Google Scholar] [CrossRef]
- Guo, F.; Ye, K.; Du, M.; Huang, X.; Cheng, K.; Wang, G.; Cao, D. Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium. Electrochim. Acta 2016, 210, 474–482. [Google Scholar] [CrossRef]
- Hameed, R.A.; Medany, S.S. Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electro-oxidation reaction. J. Colloid Interface Sci. 2018, 513, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, I.M.; Dao, V.-D.; Yasin, A.S.; Choi, H.-S.; Khalil, K.; Barakat, N.A. Facile synthesis of GO@ SnO2/TiO2 nanofibers and their behavior in photovoltaics. J. Colloid Interface Sci. 2017, 490, 303–313. [Google Scholar] [CrossRef]
- Dissanayake, M.A.K.L.; Kumari, J.M.K.W.; Senadeera, G.K.R.; Thotawatthage, C.A.; Mellander, B.E.; Albinsson, I. A novel multilayered photoelectrode with nitrogen doped TiO2 for efficiency enhancement in dye sensitized solar cells. J. Photochem. Photobiol. A Chem. 2017, 349, 63–72. [Google Scholar]
- Melhem, H.; Simon, P.; Wang, J.; Di Bin, C.; Ratier, B.; Leconte, Y.; Herlin-Boime, N.; Makowska-Janusik, M.; Kassiba, A.; Boucle, J. Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2013, 117, 624–631. [Google Scholar] [CrossRef]
No. | EQ | Rs ohm.cm2 | Rct1 ohm.cm2 | Rct2 ohm.cm2 | CPE1-T µF | CPE1-P, F | CPE2-T(+), µF | CPE2-P(+), F |
---|---|---|---|---|---|---|---|---|
1 | EQ1 | 1.09 | 14.46 | - | 374.2 | 0.586 | - | - |
Error, % | 4.2823 | 2.0859 | - | 12.792 | 2.638 | - | - | |
2 | EQ2 | 1.3705 | 5.635 | 5.525 | 21.423 | 0.89 | 524.73 | 0.794 |
Error, % | 0.3614 | 1.1652 | 1.39 | 5.218 | 0.95 | 38.25 | 8.48 | |
3 | EQ3 | 1.3688 | 6.72 | 8.35 | 21.53 | 0.881 | 1228.3 | 0.72 |
Error, % | 0.4176 | 1.3679 | 1.50 | 4.98 | 0.57 | 4.27 | 1.599 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Lateef, H.M.; Khalaf, M.M.; Dao, V.-D.; Mohamed, I.M.A. Electrochemical Impedance Investigation of Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanofibers Photoanodes. Materials 2022, 15, 6175. https://doi.org/10.3390/ma15176175
Abd El-Lateef HM, Khalaf MM, Dao V-D, Mohamed IMA. Electrochemical Impedance Investigation of Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanofibers Photoanodes. Materials. 2022; 15(17):6175. https://doi.org/10.3390/ma15176175
Chicago/Turabian StyleAbd El-Lateef, Hany M., Mai M. Khalaf, Van-Duong Dao, and Ibrahim M. A. Mohamed. 2022. "Electrochemical Impedance Investigation of Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanofibers Photoanodes" Materials 15, no. 17: 6175. https://doi.org/10.3390/ma15176175
APA StyleAbd El-Lateef, H. M., Khalaf, M. M., Dao, V. -D., & Mohamed, I. M. A. (2022). Electrochemical Impedance Investigation of Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanofibers Photoanodes. Materials, 15(17), 6175. https://doi.org/10.3390/ma15176175