Experimental Study on the Gmax Characteristics of the Sand-Silt Mixed Soil Materials Using Bender Element Testing
Abstract
:1. Introduction
2. Bender Element Test
2.1. Test Apparatus
2.2. Test Material
2.3. Test Procedure
2.4. Testing Programe
3. Test Results and Analysis
3.1. Factors Influencing Maximum Shear Modulus
3.2. The Evaluation Method of the Gmax of the Sand-Silt Mixtures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.X.; Wang, Y.Z.; Zhao, D.F.; Zhao, K.; Yang, J. A new effective stress method for nonlinear site response analyses. Earthq. Eng. Struct. Dyn. 2021, 50, 1595–1611. [Google Scholar] [CrossRef]
- Turner, M.M.; Ghayoomi, M. Site response analysis of induced seismic events in the CENA region. Soil Dyn. Earthq. Eng. 2022, 153, 107118. [Google Scholar] [CrossRef]
- Elekes, F.; Parteli, E.J.R. An expression for the angle of repose of dry cohesive granular materials on Earth and in planetary environments. Proc. Natl. Acad. Sci. USA 2021, 118, e2107965118. [Google Scholar] [CrossRef]
- Baule, A.; Morone, F.; Herrmann, H.J.; Makse, H.A. Edwards statistical mechanics for jammed granular matter. Rev. Mod. Phys. 2018, 90, 015006. [Google Scholar] [CrossRef]
- Asadi, M.B.; Asadi, M.S.; Orense, R.P.; Pender, M.J. Small-Strain Stiffness of Natural Pumiceous Sand. J. Geotech. Geoenviron. Eng. 2020, 146, 06020006. [Google Scholar] [CrossRef]
- Ha Giang, P.H.; Van Impe, P.O.; Van Impe, W.F.; Menge, P.; Haegeman, W. Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation. Soil Dyn. Earthq. Eng. 2017, 100, 371–379. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J. Influence of size disparity on small-strain shear modulus of sand-fines mixtures. Soil Dyn. Earthq. Eng. 2018, 115, 217–224. [Google Scholar] [CrossRef]
- Shi, J.Q.; Haegeman, W.; Cnudde, V. Anisotropic small strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation. Géotechnique 2019, 71, 305–319. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zou, D.G.; Liu, J.M.; Zheng, B.W.; Zhou, C.G.; Bai, J.S. A gradation-dependent particle shape factor for characterizing small-strain shear modulus of sand-gravel mixtures. Transp. Geotech. 2021, 28, 100548. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J. Shear wave velocity in sand: Effect of grain shape. Géotechnique 2018, 68, 742–748. [Google Scholar] [CrossRef]
- Cheng, K.; Zhang, J.; Miao, Y.; Ruan, B.; Peng, T. The effect of plastic fines on the shear modulus and damping ratio of silty sands. Bull. Eng. Geol. Environ. 2019, 78, 5865–5876. [Google Scholar] [CrossRef]
- Shi, J.Q.; Haegeman, W.; Xu, T. Effect of non-plastic fines on the anisotropic small strain stiffness of a calcareous sand. Soil Dyn. Earthq. Eng. 2020, 139, 106381. [Google Scholar] [CrossRef]
- Otsubo, M.; Liu, J.M.; Kawaguchi, Y.; Dutta, T.T.; Kuwano, R. Anisotropy of elastic wave velocity influenced by particle shape and fabric anisotropy under K0 condition. Comp. Geotech. 2020, 128, 103775. [Google Scholar] [CrossRef]
- Liu, J.; Otsubo, M.; Kawaguchi, Y.; Kuwano, R. Anisotropy in small-strain shear modulus of granular materials: Effects of particle properties and experimental conditions. Soils Found. 2022, 62, 101105. [Google Scholar] [CrossRef]
- Hardin, B.O.; Black, W.L. Sand stiffness under various triaxial stresses. J. Soil Mech. Found. Div. 1966, 92, 27–42. [Google Scholar] [CrossRef]
- Jafarian, Y.; Javdanian, H. Small-strain dynamic properties of siliceous-carbonate sand under stress anisotropy. Soil Dyn. Earthq. Eng. 2020, 131, 106045. [Google Scholar] [CrossRef]
- Wichtmann, T.; Triantafyllidis, T. Small-strain constrained elastic modulus of clean quartz sand with various grain size distribution. Soil Dyn. Earthq. Eng. 2013, 55, 130–139. [Google Scholar] [CrossRef]
- Doi, I.; Kamai, T.; Azuma, R.; Wang, G. A landslide induced by the 2016 Kumamoto Earthquake adjacent to tectonic displacement—Generation mechanism and long-term monitoring. Eng. Geol. 2019, 248, 80–88. [Google Scholar] [CrossRef]
- Janalizadeh, C.A.; Selatahneh, H.; Karimi, P.M. Effect of fines on liquefaction resistance of sand. Innov. Infrastruct. Solut. 2020, 5, 87. [Google Scholar] [CrossRef]
- Iwasaki, T.; Tatsuoka, F. Effects of grain size and grading on dynamic shear moduli of sands. Soils Found. 1977, 17, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, X. Shear wave velocity and stiffness of sand: The role of non-plastic fines. Géotechnique 2016, 66, 500–514. [Google Scholar] [CrossRef]
- Choo, H.; Burns, S.E. Shear wave velocity of granular mixtures of silica particles as a function of fine fraction, size ratios and void ratios. Granul. Matter 2015, 17, 567–578. [Google Scholar] [CrossRef]
- Wichtmann, T.; Hernández, M.A.N.; Triantafyllidis, T. On the influence of a noncohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dyn. Earthq. Eng. 2015, 69, 103–114. [Google Scholar] [CrossRef]
- Thevanayagam, S.; Liang, J. Shear wave velocity relations for silty and gravel soils. In Proceedings of the 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, USA, 29 March 2001; p. 26. Available online: https://scholarsmine.mst.edu/icrageesd/04icrageesd/session01/26 (accessed on 29 March 2001).
- Goudarzy, M.; Konig, D.; Schanz, T. Small strain stiffness of granular materials containing fines. Soils Found. 2016, 56, 756–764. [Google Scholar] [CrossRef]
- Goudarzy, M.; Rahman, M.M.; Konig, D.; Schanza, T. Influence of non-plastic fines content on maximum shear modulus of granular materials. Soils Found. 2016, 56, 973–983. [Google Scholar] [CrossRef]
- Payan, M.; Khoshghalb, A.; Senetakis, K.; Khalili, N. Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression. Comp. Geotech. 2016, 72, 28–41. [Google Scholar] [CrossRef]
- Pan, K.; Yuan, Z.H.; Zhao, C.F.; Tong, J.H.; Yang, Z.X. Undrained shear and stiffness degradation of intact marine clay under monotonic and cyclic loading. Eng. Geol. 2021, 297, 106502. [Google Scholar] [CrossRef]
- Brignoli, E.G.M.; Gotti, M.; Stokoe, K.H. Measurement of shear waves in laboratory specimens by means of piezoelectric transducers. Geotech. Test. J. 1996, 19, 384–397. [Google Scholar] [CrossRef]
- Gu, X.Q.; Yang, J. A discrete element analysis of elastic properties of granular materials. Granul. Matter 2013, 15, 139–147. [Google Scholar] [CrossRef]
- Ishihara, K. Liquefaction and flow failure during earthquakes. Geotechnique 1993, 43, 351–451. [Google Scholar] [CrossRef]
- Skempton, A.W. The pore-pressure coefficients A and B. Geotechnique 1954, 4, 143–147. [Google Scholar] [CrossRef]
- Thevanayagam, S.; Martin, G.R. Liquefaction in silty soils-screening and remediation issue. Soil Dyn. Earthq. Eng. 2002, 22, 1035–1042. [Google Scholar] [CrossRef]
- Salgado, R.; Bandini, P.; Karim, A. Shear strength and stiffness of silty sand. J. Geotech. Geoenviron. Eng. 2000, 126, 451–462. [Google Scholar] [CrossRef]
- Wichtmann, T.; Triantafyllidis, T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax. J. Geotech. Geoenviron. Eng. 2009, 135, 1404–1418. [Google Scholar] [CrossRef]
- Mcdowell, G.R.; Bolton, M.D. Micro mechanics of elastic soil. Soils Found. 2001, 41, 147–152. [Google Scholar] [CrossRef]
- Yamashita, S.; Kawaguchi, T.; Nakata, Y.; Mikami, T.; Shibuya, S. Interpretation of international parallel test on the measurement of Gmax using bender elements. Soils Found. 2009, 49, 631–650. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lo, S.R.; Gnanendran, C.T. On equivalent granular void ratio and steady state behaviour of loose sand with fines. Can. Geotech. J. 2008, 45, 1439–1456. [Google Scholar] [CrossRef]
- Payan, M.; Senetakis, K.; Khoshghalb, A.; Khalili, N. Characterization of the small-strain dynamic behaviour of silty sands; contribution of silica non-plastic fines content. Soil Dyn. Earthq. Eng. 2017, 102, 232–240. [Google Scholar] [CrossRef]
Index | d50/mm | d10/mm | Cu | Gs | emax | emin |
Sand | 0.114 | 0.080 | 1.672 | 2.672 | 1.262 | 0.662 |
Fines | 0.040 | 0.016 | 2.931 | 2.719 | 1.481 | 0.764 |
No. | FC/% | Dr /% | e | ρ /(g/cm3) | Gmax/MPa | |||||
---|---|---|---|---|---|---|---|---|---|---|
100 | 200 | 250 | 300 | 400 | ||||||
S1 | 0 | 35 | 1.076 | 1.286 | 97.2 | 129.2 | 148.7 | 159.3 | 192.6 | |
S2 | 0 | 50 | 0.973 | 1.352 | 117.7 | 147.3 | 169.5 | 186.2 | 214.2 | |
S3 | 0 | 60 | 0.890 | 1.412 | 157.6 | 199.7 | 223.7 | 239.7 | 252.7 | |
S4 | 10 | 35 | 1.009 | 1.334 | 90.2 | 124.9 | 144.4 | 158.8 | 184.6 | |
S5 | 10 | 50 | 0.934 | 1.386 | 96.6 | 130.6 | 156.5 | 170.7 | 200.1 | |
S6 | 10 | 60 | 0.883 | 1.424 | 138.6 | 169.4 | 201.3 | 215.4 | 245.2 | |
S7 | 20 | 35 | 0.936 | 1.348 | 84.9 | 126.2 | 141.5 | 154.0 | 174.7 | |
S8 | 20 | 50 | 0.947 | 1.382 | 100.7 | 126.0 | 145.1 | 159.8 | 182.1 | |
S9 | 20 | 60 | 0.824 | 1.475 | 124.0 | 167.5 | 184.8 | 206.3 | 238.3 | |
S10 | 30 | 35 | 0.948 | 1.386 | 73.3 | 101.8 | 111.0 | 128.9 | 152.8 | |
S11 | 30 | 50 | 0.865 | 1.448 | 89.8 | 126.8 | 141.8 | 158.6 | 169.3 | |
S12 | 30 | 60 | 0.792 | 1.506 | 113.1 | 164.0 | 182.4 | 200.7 | 226.8 | |
S13 | 50 | 35 | 0.996 | 1.358 | 73.1 | 104.2 | 110.3 | 127.1 | 160.7 | |
S14 | 50 | 50 | 0.909 | 1.419 | 85.2 | 121.0 | 126.9 | 151.8 | 181.9 | |
S15 | 50 | 60 | 0.810 | 1.497 | 108.3 | 159.1 | 180.3 | 200.5 | 233.6 | |
S16 | 70 | 35 | 1.010 | 1.350 | 71.4 | 101.4 | 114.3 | 127.3 | 155.2 | |
S17 | 70 | 50 | 0.957 | 1.387 | 88.1 | 112.7 | 125.7 | 147.4 | 183.8 | |
S18 | 70 | 60 | 0.868 | 1.453 | 103.6 | 152.6 | 171.0 | 183.1 | 209.8 | |
S19 | 100 | 35 | 1.231 | 1.258 | 78.7 | 105.1 | 117.1 | 129.7 | 157.7 | |
S20 | 100 | 50 | 1.125 | 1.335 | 87.5 | 128.3 | 145.4 | 149.9 | 180.9 | |
S21 | 100 | 60 | 0.990 | 1.409 | 98.9 | 146.9 | 161.9 | 176.5 | 209.8 |
Code | Test Material | FC-th | A(FC=0) | A(FC=100%) | m | n |
---|---|---|---|---|---|---|
A | White sand + quartz fines | 33.3 | 0.675 | 0.385 | 1.170 | 0.150 |
B | Blue sand 1 + quartz fines | 29.5 | 0.566 | 0.385 | 0.810 | 0.082 |
C | Blue sand 2 + quartz fines | 42.7 | 0.541 | 0.385 | 0.957 | 0.442 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, J.; Wu, H.; Xiao, X.; Wu, Q.; Zhou, Z.-L. Experimental Study on the Gmax Characteristics of the Sand-Silt Mixed Soil Materials Using Bender Element Testing. Materials 2022, 15, 6200. https://doi.org/10.3390/ma15186200
Bian J, Wu H, Xiao X, Wu Q, Zhou Z-L. Experimental Study on the Gmax Characteristics of the Sand-Silt Mixed Soil Materials Using Bender Element Testing. Materials. 2022; 15(18):6200. https://doi.org/10.3390/ma15186200
Chicago/Turabian StyleBian, Jiang, Hao Wu, Xing Xiao, Qi Wu, and Zheng-Long Zhou. 2022. "Experimental Study on the Gmax Characteristics of the Sand-Silt Mixed Soil Materials Using Bender Element Testing" Materials 15, no. 18: 6200. https://doi.org/10.3390/ma15186200
APA StyleBian, J., Wu, H., Xiao, X., Wu, Q., & Zhou, Z. -L. (2022). Experimental Study on the Gmax Characteristics of the Sand-Silt Mixed Soil Materials Using Bender Element Testing. Materials, 15(18), 6200. https://doi.org/10.3390/ma15186200