Influence of the Composition and Vacancy Concentration on Cluster Decomposition Behavior in Al–Si–Mg Alloy: A Kinetic Monte Carlo Study
Abstract
:1. Introduction
2. Kinetic Monte Carlo Simulation
2.1. Vacancy Diffusion in Al–Si–Mg Alloys
Parameter | Value | Ref. |
---|---|---|
(s−1) | 1.66 × 1013 | [35] |
(s−1) | 1.86 × 1013 | [35] |
(s−1) | 1.57 × 1013 | [35] |
(eV) | 1.29 | [35] |
(eV) | 1.27 | [35] |
(eV) | 1.15 | [35] |
(eV) | 0.63 | [35] |
(eV) | −0.015 | [39] |
(eV) | −0.025 | [39] |
(eV) | −0.04 | [39] |
(eV) | 0.04 | [39] |
(eV) | 0.03 | [39] |
2.2. Modeling Methods
2.2.1. Cluster Decomposition Behavior
2.2.2. Clustering during NA with/without PA
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, S.; Shih, H.-C.; Cui, X.; Yu, C.-Y.; Ringer, S.P. Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy. Acta Mater. 2021, 203, 116455. [Google Scholar] [CrossRef]
- Kairy, S.K.; Rometsch, P.A.; Davies, C.H.J.; Birbilis, N. On the intergranular corrosion and hardness evolution of 6xxx series Al alloys as a function of Si:Mg ratio, Cu content, and aging condition. Corrosion 2017, 73, 1280–1295. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Samuel, A.M.; Doty, H.W.; Samuel, F.H. Effect of aging conditions on precipitation hardening in Al–Si–Mg and Al–Si–Cu–Mg alloys. Int. J. Metalcast. 2016, 11, 274–286. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, Y.; Marceau, R.; Wang, L.; Zhang, Q.; Gao, X.; Hutchinson, X. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 2019, 363, 972–975. [Google Scholar] [CrossRef]
- Cinkilic, E.; Yan, X.; Luo, A.A. Modeling Precipitation hardening and yield strength in cast Al-Si-Mg-Mn alloys. Metals 2020, 10, 1356. [Google Scholar] [CrossRef]
- Murayama, M.; Hono, K. Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater. 1999, 47, 1537–1548. [Google Scholar] [CrossRef]
- Yan, Y.; Liang, Z.; Banhart, J. Influence of pre-straining and pre-ageing on the age-hardening response of Al–Mg–Si Alloys. Mater. Sci. Forum. 2014, 794, 903–908. [Google Scholar] [CrossRef]
- Guo, M.X.; Sha, G.; Cao, L.Y.; Liu, W.Q.; Zhang, J.S.; Zhuang, L.Z. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition. Mater. Chem. Phys. 2015, 162, 15–19. [Google Scholar] [CrossRef]
- Lee, Y.S.; Koh, D.H.; Kim, H.W.; Ahn, Y.S. Improved bake-hardening response of Al–Zn–Mg–Cu alloy through pre-aging treatment. Scr. Mater. 2018, 147, 45–49. [Google Scholar] [CrossRef]
- Gong, W.; Xie, M.; Zhang, J. Giant bake hardening response of multi-scale precipitation strengthened Al–Mg–Si–Cu–Zn alloy via pre-aging treatments. Mater. Charact. 2021, 181, 111464. [Google Scholar] [CrossRef]
- Möller, H.; Govender, G.; Stumpf, W.E. Natural and artificial aging response of semisolid metal processed Al–Si–Mg alloy A356. Int. J. Cast Met. Res. 2007, 20, 340–346. [Google Scholar] [CrossRef]
- Seyedrezai, H.; Grebennikov, D.; Mascher, P.; Zurob, H.S. Study of the early stages of clustering in Al–Mg–Si alloys using the electrical resistivity measurements. Mater. Sci. Eng. A 2009, 525, 186–191. [Google Scholar] [CrossRef]
- Schmid, F.; Dumitraschkewitz, P.; Kremmer, T.; Uggowitzer, P.J.; Tosone, R.; Pogatscher, S. Enhanced aging kinetics in Al–Mg–Si alloys by up-quenching. Commun. Mater. 2021, 2, 58. [Google Scholar] [CrossRef]
- Banhart, J.; Chang, C.S.T.; Liang, Z.; Wanderka, N.; Lay, M.D.H.; Hill, A.J. Natural aging in Al–Mg–Si alloys—A process of unexpected complexity. Adv. Eng. Mater. 2010, 12, 559–571. [Google Scholar] [CrossRef]
- Girifalco, L.A.; Herman, H. A model for the growth of Guinier-Preston zones—The vacancy pump. Acta Metall. 1965, 13, 583–590. [Google Scholar] [CrossRef]
- Kashyap, K.T.; Murali, S.; Raman, K.S.; Murthy, K.S.S. Casting and heat treatment variables of Al–7Si–Mg alloy. Mater. Sci. Technol. 1993, 9, 189–203. [Google Scholar] [CrossRef]
- Pogatscher, S.; Antrekowitsch, H.; Werinos, M.; Moszner, F.; Gerstl, S.S.A.; Francis, M.F.; Curtin, W.A.; Löffler, J.F.; Uggowitzer, P.J. Diffusion on demand to control precipitation aging: Application to Al–Mg–Si alloys. Phys. Rev. Lett. 2014, 112, 225701. [Google Scholar] [CrossRef]
- Dumitraschkewitz, P.; Uggowitzer, P.J.; Gerstl, S.S.A.; Löffler, J.F.; Pogatscher, S. Size-dependent diffusion controls natural aging in aluminium alloys. Nat. Commun. 2019, 10, 4746. [Google Scholar] [CrossRef]
- Duan, X.; Mi, Z.; Jiang, H.; Wu, Y.; Wang, J. Rapid bake-hardening response of Al–Mg–Si alloy during two-stage pre-aging heat treatment. Mater. Res. Express 2019, 6, 076576. [Google Scholar] [CrossRef]
- Zhu, S.; Li, Z.; Yan, L.; Li, X.; Huang, S.; Yan, H.; Zhang, Y.; Xiong, B. Natural aging behavior in pre-aged Al–Mg–Si–Cu alloys with and without Zn addition. J. Alloys Compd. 2019, 773, 496–502. [Google Scholar] [CrossRef]
- Weng, Y.; Jia, Z.; Ding, L.; Liu, M.; Wu, W.; Liu, Q. Combined effect of pre-aging and Ag/Cu addition on the natural aging and bake hardening in Al–Mg–Si alloys. Prog. Nat. Sci. Mater. Inter. 2018, 28, 363–370. [Google Scholar] [CrossRef]
- Fischer, F.D.; Svoboda, J.; Appel, F.; Kozeschnik, E. Modeling of excess vacancy annihilation at different types of sinks. Acta Mater. 2011, 59, 3463–3472. [Google Scholar] [CrossRef]
- Falahati, A.; Lang, P.; Kozeschnik, E. Precipitation in Al-alloy 6016—The role of excess vacancies. Mater. Sci. Forum 2012, 706, 317–322. [Google Scholar] [CrossRef]
- Gupta, A.K.; Lloyd, D.J.; Court, S.A. Precipitation hardening processes in an Al–0.4%Mg–1.3%Si–0.25%Fe aluminum alloy. Mater. Sci. Eng. A 2001, 301, 140–146. [Google Scholar] [CrossRef]
- Aruga, Y.; Kim, S.; Kozuka, M.; Kobayashi, E.; Sato, T. Effects of cluster characteristics on two-step aging behavior in Al–Mg–Si alloys with different Mg/Si ratios and natural aging periods. Mater. Sci. Eng. A 2018, 718, 371–376. [Google Scholar] [CrossRef]
- Im, J.; Jeon, J.; Song, M.; Hong, S.; Kim, J. Influence of natural aging time and Mg/Si ratio (Mg + Si = 1.3 mass%) on the two-step aging behavior in Al–Mg–Si alloys. Met. Mater. Int. 2019, 25, 860–868. [Google Scholar] [CrossRef]
- Tao, G.H.; Liu, C.H.; Chen, J.H.; Lai, Y.X.; Ma, P.P.; Liu, L.M. The influence of Mg/Si ratio on the negative natural aging effect in Al–Mg–Si–Cu alloys. Mater. Sci. Eng. A 2015, 642, 241–248. [Google Scholar] [CrossRef]
- Aruga, Y.; Kozuka, M.; Sato, T. Formulation of initial artificial age-hardening response in an Al–Mg–Si alloy based on the cluster classification using a high-detection-efficiency atom probe. J. Alloys Compd. 2018, 739, 1115–1123. [Google Scholar] [CrossRef]
- Fallah, V.; Langelier, B.; Ofori-Opoku, N.; Raeisinia, B.; Provatas, N.; Esmaeili, S. Cluster evolution mechanisms during aging in Al–Mg–Si alloys. Acta Mater. 2016, 103, 290–300. [Google Scholar] [CrossRef]
- Freitas, R.R.Q.; Mota, F.D.B.; Rivelino, R.; Castilho, C.M.C.D.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Spin-orbit-induced gap modification in buckled honeycomb XBi and XBi3 (X = B, Al, Ga, and In) sheets. J. Phys. Condens. Matter 2015, 27, 485306. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.B.D.; Rivelino, R.; Mota, F.D.B.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Feasibility of novel (H3C)nX(SiH3)3-n compounds (X = B, Al, Ga, In): Structure, stability, reactivity, and Raman characterization from ab initio calculations. Dalton Trans. 2015, 44, 3356. [Google Scholar] [CrossRef] [PubMed]
- Clouet, E.; Hin, C.; Gendt, D.; Nastar, M.; Soisson, F. Kinetic Monte Carlo simulations of precipitation. Adv. Eng. Mater. 2006, 8, 1210–1214. [Google Scholar] [CrossRef]
- Deschamps, A.; Hutchinson, C.R. Precipitation kinetics in metallic alloys: Experiments and modeling. Acta Mater. 2021, 220, 117328. [Google Scholar] [CrossRef]
- Liu, M.; Klobes, B.; Banhart, J. Positron lifetime study of the formation of vacancy clusters and dislocations in quenched Al, Al–Mg and Al–Si alloys. J. Mater. Sci. 2016, 51, 7754–7767. [Google Scholar] [CrossRef]
- Mantina, M.; Wang, Y.; Chen, L.Q.; Liu, Z.K.; Wolverton, C. First principles impurity diffusion coefficients. Acta Mater. 2009, 57, 4102–4108. [Google Scholar] [CrossRef]
- Mizuno, M.; Sugita, K.; Araki, H. Structure and stability of vacancy–solute complexes in Al–Mg–Si alloys. Materialia 2020, 13, 100853. [Google Scholar] [CrossRef]
- Werinos, M.; Antrekowitsch, H.; Ebner, T.; Prillhofer, R.; Curtin, W.A.; Uggowitzer, P.J.; Pogatscher, S. Design strategy for controlled natural aging in Al–Mg–Si alloys. Acta Mater 2016, 118, 296–305. [Google Scholar] [CrossRef]
- Peng, J.; Bahl, S.; Shyam, A.; Haynes, J.A.; Shin, D. Solute–vacancy clustering in aluminum. Acta Mater. 2020, 196, 747–758. [Google Scholar] [CrossRef]
- Hirosawa, S.; Nakamura, F.; Sato, T. First-principles calculation of interaction energies between solutes and/or vacancies for predicting atomistic behaviors of microalloying elements in aluminum alloys. Mater. Sci. Forum. 2007, 561–565, 283–286. [Google Scholar] [CrossRef]
- Sonderegger, B.; Kozeschnik, E. Interfacial energy of diffuse phase boundaries in the generalized broken-bond approach. Metall. Mater. Trans. A 2010, A41, 3262–3269. [Google Scholar] [CrossRef]
- Birol, Y. Pre-aging to improve bake hardening in a twin-roll cast Al–Mg–Si alloy. Mater. Sci. Eng. A 2005, 391, 175–180. [Google Scholar] [CrossRef]
- Woo, W.; Ungár, T.; Feng, Z.; Kenik, E.; Clausen, B. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction-stir-welded aluminum alloy. Metall. Mater. Trans. A 2010, 41, 1210–1216. [Google Scholar] [CrossRef]
- Myhr, O.R.; Grong, Ø.; Pedersen, K.O. A combined precipitation, yield strength, and work hardening model for Al–Mg–Si alloys. Metall. Mater. Trans. A 2010, 41, 2276–2289. [Google Scholar] [CrossRef]
- Porter, D.A.; Easterling, K.E.; Easterling, K.E. Phase Transformations in Metals and Alloys, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Zhan, H.; Hu, B. Analyzing the microstructural evolution and hardening response of an Al-Si-Mg casting alloy with Cr addition. Mater. Charact. 2018, 142, 602–612. [Google Scholar] [CrossRef]
- Colombo, M.; Buzolin, R.H.; Gariboldi, E.; Rovatti, L.; Vallant, E.; Sommitsch, C. Effects of Er and Zr additions on the as-cast microstructure and on the solution-heat-treatment response of innovative Al–Si–Mg-based alloys. Metall. Mater. Trans. A 2019, 51, 1000–1011. [Google Scholar] [CrossRef]
- Saboori, A.; Pavese, M.; Badini, C.; Eivani, A.R. Studying the age hardening kinetics of A357 aluminum alloys through the Johnson–Mehl–Avrami theory. Met. Powder Rep. 2017, 72, 420–424. [Google Scholar] [CrossRef]
- Luo, A.; Lloyd, D.J.; Gupta, A.; Youdelis, W.V. Precipitation and dissolution kinetics in Al–Li–Cu–Mg alloy 8090. Acta Metall. Mater. 1993, 41, 769–776. [Google Scholar] [CrossRef]
- Zandbergen, M.W.; Xu, Q.; Cerezo, A.; Smith, G.D.W. Study of precipitation in Al–Mg–Si alloys by Atom Probe Tomography I. Microstructural changes as a function of ageing temperature. Acta Mater. 2015, 101, 136–148. [Google Scholar] [CrossRef]
Mg/(Mg + Si) | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 | 0.6 | 0.65 | 0.7 |
---|---|---|---|---|---|---|---|---|---|
Si–Si (%) | 48.8 | 41.93 | 35.75 | 29.58 | 24.42 | 19.74 | 15.54 | 11.95 | 8.72 |
Mg–Mg (%) | 8.84 | 11.72 | 15.47 | 19.99 | 24.56 | 29.93 | 35.42 | 41.84 | 48.68 |
Mg–Si (%) | 42.49 | 46.34 | 48.77 | 50.42 | 51.02 | 50.33 | 49.04 | 46.21 | 42.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kang, H.; Jeon, J.; Bae, D. Influence of the Composition and Vacancy Concentration on Cluster Decomposition Behavior in Al–Si–Mg Alloy: A Kinetic Monte Carlo Study. Materials 2022, 15, 6552. https://doi.org/10.3390/ma15196552
Lee S, Kang H, Jeon J, Bae D. Influence of the Composition and Vacancy Concentration on Cluster Decomposition Behavior in Al–Si–Mg Alloy: A Kinetic Monte Carlo Study. Materials. 2022; 15(19):6552. https://doi.org/10.3390/ma15196552
Chicago/Turabian StyleLee, Sangjun, Heon Kang, Jonggyu Jeon, and Donghyun Bae. 2022. "Influence of the Composition and Vacancy Concentration on Cluster Decomposition Behavior in Al–Si–Mg Alloy: A Kinetic Monte Carlo Study" Materials 15, no. 19: 6552. https://doi.org/10.3390/ma15196552
APA StyleLee, S., Kang, H., Jeon, J., & Bae, D. (2022). Influence of the Composition and Vacancy Concentration on Cluster Decomposition Behavior in Al–Si–Mg Alloy: A Kinetic Monte Carlo Study. Materials, 15(19), 6552. https://doi.org/10.3390/ma15196552