Manufacturing of Ti-Nb-Cr-V-Ni-Al Refractory High-Entropy Alloys Using Direct Energy Deposition
Abstract
:1. Introduction
2. Phase Analysis
3. Experimental Procedure
3.1. Experimental Set-Up and Materials
3.2. DED Method and Conditions
4. Results
4.1. Microstructure
4.2. XRD and EDS Analyses
4.3. Microhardness
4.4. Heat-Affected Zone
5. Conclusions
- SEM images and EBSD analysis were used to investigate the microstructure of the deposited Ti-Nb-Cr-V-Ni-Al. Phase analysis predicted that the BCC B2 phase was 62.2%, the BCC A2 phase was 21.6%, and C14 Laves phase was 16.2%. However, the σ phase was 64.2%, the BCC A2 phase was 28.2%, and the Ti2Ni phase was 7.6% in the deposited Ti-Nb-Cr-V-Ni-Al.
- The microstructure of the deposited Ti-Nb-Cr-V-Ni-Al consisted of a phase not predicted by the phase analysis but showed a microstructure similar to that of Ti-Nb-Cr-V-Ni-Al annealed after casting. In addition, the deposited Ti-Nb-Cr-V-Ni-Al exhibited a fine grain size of 1–35 μm. The growth of this microstructure was attributed to the high energy density of the laser used in DED, which showed the heat treatment effect by rapid cooling after rapidly increasing the temperature to a high temperature.
- The microhardness of the deposited Ti-Nb-Cr-V-Ni-Al was investigated. The microhardness of the Ti-Nb-Cr-V-Ni-Al deposited area was measured to be approximately 900 HV. The microhardness of the Ti-6Al-4V and Inconel 718 used by the substrates increased by 17–19% compared with that of the wrought material, and the microhardness of the bonding layer was measured to be an intermediate value of the microhardness of the deposition area and the substrate. The cause of the increased microhardness of the substrate was analyzed as heat treatment, owing to the rapid temperature change occurring in the DED.
- A preheat test was performed for the HAZ measurement of the Ti-Nb-Cr-V-Ni-Al deposited by DED. The HAZ depths of the Ti-6Al-4V and Inconel 718 were reduced by 16.07% and 14.42%, respectively, according to the Ti-Nb-Cr-V-Ni-Al deposition. The HAZ decreased owing to the high thermal diffusivity of Ti-Nb-Cr-V-Ni-Al. In addition, the deposited Ti-Nb-Cr-V-Ni-Al exhibited a heat-shielding effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-Component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Poletti, M.G.; Fiore, G.; Gili, F.; Mangherini, D.; Battezzati, L. Development of a New High Entropy Alloy for Wear Resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C. Mater. Des. 2017, 115, 247–254. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-Entropy Alloy: Challenges and Prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Panina, E.S.; Yurchenko, N.Y.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Mishunin, M.V.; Stepanov, N.D. Structures and Mechanical Properties of Ti-Nb-Cr-V-Ni-Al Refractory High Entropy Alloys. Mater. Sci. Eng. A 2020, 786, 139409. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A.; Oleynik, E.E.; Tortika, A.S.; Senkov, O.N. Effect of v Content on Microstructure and Mechanical Properties of the CoCrFeMnNiVx High Entropy Alloys. J. Alloys Compd. 2015, 628, 170–185. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, B.; Li, C.; Wang, Q.; Dong, C.; Liaw, P.K.; Xu, F.; Sun, L. The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys. Metals 2017, 7, 57. [Google Scholar] [CrossRef]
- Lilensten, L.; Couzinié, J.P.; Perrière, L.; Bourgon, J.; Emery, N.; Guillot, I. New Structure in Refractory High-Entropy Alloys. Mater. Lett. 2014, 132, 123–125. [Google Scholar] [CrossRef]
- Yurchenko, N.; Panina, E.; Shaysultanov, D.; Zherebtsov, S.; Stepanov, N. Refractory High Entropy Alloy with Ductile Intermetallic B2 Matrix / Hard Bcc Particles and Exceptional Strain Hardening Capacity. Materialia 2021, 20, 101225. [Google Scholar] [CrossRef]
- Li, P.; Jia, Y.; Yi, J.; Ma, X.; Pu, J.; Wang, D. Composition Design, Microstructure and Mechanical Properties of Novel Multiphase Ti–Cu–Ni–Nb Complex Concentrated Alloys. J. Alloys Compd. 2020, 844, 156175. [Google Scholar] [CrossRef]
- Nagase, T.; Todai, M.; Hori, T.; Nakano, T. Microstructure of Equiatomic and Non-Equiatomic Ti-Nb-Ta-Zr-Mo High-Entropy Alloys for Metallic Biomaterials. J. Alloys Compd. 2018, 753, 412–421. [Google Scholar] [CrossRef]
- Gao, M.C.; Carney, C.S.; Doğan, N.; Jablonksi, P.D.; Hawk, J.A.; Alman, D.E. Design of Refractory High-Entropy Alloys. JOM 2015, 67, 2653–2669. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory High-Entropy Alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Hsu, W.C.; Kao, W.P.; Yeh, J.W.; Tsai, C.W. Effect of Mo on the Mechanical and Corrosion Behaviors in Non-Equal Molar AlCrFeMnNi BCC High-Entropy Alloys. Materials 2022, 15, 751. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.P. Development and Exploration of Refractory High Entropy Alloys—A Review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Chen, S.; Tong, Y.; Liaw, P.K. Additive Manufacturing of High-Entropy Alloys: A Review. Entropy 2018, 20, 937. [Google Scholar] [CrossRef] [PubMed]
- Ostovari Moghaddam, A.; Shaburova, N.A.; Samodurova, M.N.; Abdollahzadeh, A.; Trofimov, E.A. Additive Manufacturing of High Entropy Alloys: A Practical Review. J. Mater. Sci. Technol. 2021, 77, 131–162. [Google Scholar] [CrossRef]
- Zhang, H.X.; Dai, J.J.; Sun, C.X.; Li, S.Y. Microstructure and Wear Resistance of TiAlNiSiV High-Entropy Laser Cladding Coating on Ti-6Al-4V. J. Mater. Process Technol. 2020, 282, 116671. [Google Scholar] [CrossRef]
- Woo, W.S.; Kim, E.J.; Jeong, H.I.; Lee, C.M. Laser-Assisted Machining of Ti-6Al-4V Fabricated by DED Additive Manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 559–572. [Google Scholar] [CrossRef]
- Cai, C.; Qiu, J.C.D.; Shian, T.W.; Han, C.; Liu, T.; Kong, L.B.; Srikanth, N.; Sun, C.-N.; Zhou, K. Laser Powder Bed Fusion of Mo2C/Ti-6Al-4V Composites with Alternately Laminated A′/β Phases for Enhanced Mechanical Properties. Addit. Manuf. 2021, 46, 102134. [Google Scholar] [CrossRef]
- Sun, S.; Teng, Q.; Xie, Y.; Liu, T.; Ma, R.; Bai, J.; Cai, C.; Wei, Q. Two-Step Heat Treatment for Laser Powder Bed Fusion of a Nickel-Based Superalloy with Simultaneously Enhanced Tensile Strength and Ductility. Addit. Manuf. 2021, 46, 102168. [Google Scholar] [CrossRef]
- Cai, C.; Guo, S.; Li, B.; Tian, Y.; Dong Qiu, J.C.; Sun, C.N.; Yan, C.; Qi, H.J.; Zhou, K. 3D Printing and Chemical Dealloying of a Hierarchically Micro- And Nanoporous Catalyst for Wastewater Purification. ACS Appl. Mater. Interfaces 2021, 13, 48709–48719. [Google Scholar] [CrossRef] [PubMed]
- Torralba, J.M.; Campos, M. High Entropy Alloys Manufactured by Additive Manufacturing. Metals 2020, 10, 639. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.Z.; Pan, Y.; Pei, L.Z. Phase Selection, Microstructure and Properties of Laser Rapidly Solidified FeCoNiCrAl2Si Coating. Intermetallics 2011, 19, 1130–1135. [Google Scholar] [CrossRef]
- Zheng, M.; Li, C.; Zhang, X.; Ye, Z.; Yang, X.; Gu, J. The Influence of Columnar to Equiaxed Transition on Deformation Behavior of FeCoCrNiMn High Entropy Alloy Fabricated by Laser-Based Directed Energy Deposition. Addit. Manuf. 2021, 37, 101660. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Batista Da Silva, R.; Falco Sales, W.; Rocha Machado, A. Overview of the Machining of Titanium Alloys. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Oxford, UK, 2017; pp. 487–506. ISBN 978-0-12-804792-7. [Google Scholar]
- Okulov, I.V.; Bönisch, M.; Kühn, U.; Skrotzki, W.; Eckert, J. Significant Tensile Ductility and Toughness in an Ultrafine-Structured Ti68.8Nb13.6Co6Cu5.1Al6.5 Bi-Modal Alloy. Mater. Sci. Eng. A 2014, 615, 457–463. [Google Scholar] [CrossRef]
- Park, J.K.; Lee, C.M.; Kim, D.H. Investigation on the Thermal Effects of Wc-Co Turning Inserts Deposited by Additive Manufacturing of Titanium Alloy Powder. Metals 2021, 11, 1705. [Google Scholar] [CrossRef]
- Lim, J.S.; Oh, W.J.; Lee, C.M.; Kim, D.H. Selection of Effective Manufacturing Conditions for Directed Energy Deposition Process Using Machine Learning Methods. Sci. Rep. 2021, 11, 24169. [Google Scholar] [CrossRef]
- Kim, J.-H.; Oh, W.-J.; Lee, C.-M.; Kim, D.-H. Achieving Optimal Process Design for Minimizing Porosity in Additive Manufacturing of Inconel 718 Using a Deep Learning-Based Pore Detection Approach. Int. J. Adv. Manuf. Technol. 2022, 121, 2115–2134. [Google Scholar] [CrossRef]
- Ran, J.; Jiang, F.; Sun, X.; Chen, Z.; Tian, C.; Zhao, H. Microstructure and Mechanical Properties of Ti-6al-4v Fabricated by Electron Beam Melting. Crystals 2020, 10, 972. [Google Scholar] [CrossRef]
- Jeong, H.I.; Lee, C.M. A Study on Improvement of Tool Life Using a Heat Shield in Laser Assisted Machining to Inconel 718. Opt. Laser Technol. 2021, 142, 107208. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, C.M.; Kim, D.H. The Effect of Post-Processing Operations on Mechanical Characteristics of 304L Stainless Steel Fabricated Using Laser Additive Manufacturing. J. Mater. Res. Technol. 2021, 15, 1370–1381. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, M.; Liu, N.; Liu, L.X. The Formation of Sigma Phase in the CoCrFeNi High-Entropy Alloys. Mater. Res. Express 2021, 8, 076514. [Google Scholar] [CrossRef]
- Tsai, M.H.; Tsai, K.Y.; Tsai, C.W.; Lee, C.; Juan, C.C.; Yeh, J.W. Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Mater. Res. Lett. 2013, 1, 207–212. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Yurchenko, N.Y.; Skibin, D.V.; Tikhonovsky, M.A.; Salishchev, G.A. Structure and Mechanical Properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) High Entropy Alloys. J. Alloys Compd. 2015, 652, 266–280. [Google Scholar] [CrossRef]
- Sheng, L.; Yang, Y.; Xi, T. Effect of Heat Treatment on Morphology Evolution of Ti2Ni Phase in Ti-Ni-Al-Zr Alloy. In Proceedings of the IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2018; Volume 322. [Google Scholar]
- Goryczka, T.; Dudek, K. Structure of Multi-Functional Calcium Phosphates/TiO2 Layers Deposited on NiTi Shape-Memory Alloy. Powder Diffr. 2017, 32, S99–S105. [Google Scholar] [CrossRef]
- Gorsse, S.; Senkov, O.N. About the Reliability of CALPHAD Predictions in Multicomponent Systems. Entropy 2018, 20, 899. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C. Accelerated Exploration of Multi-Principal Element Alloys for Structural Applications. Calphad 2015, 50, 32–48. [Google Scholar] [CrossRef]
- Wertz, K.N.; Miller, J.D.; Senkov, O.N. Toward Multi-Principal Component Alloy Discovery: Assessment of CALPHAD Thermodynamic Databases for Prediction of Novel Ternary Alloy Systems. J. Mater. Res. 2018, 33, 3204–3217. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, C.-M.; Kim, D.-H. The Effect of Plasma-Assisted Machining and Additive Path Strategies of Inconel 718 Manufactured with Directed Energy Deposition. J. Mater. Res. Technol. 2022, 19, 1658–1672. [Google Scholar] [CrossRef]
- Beyl, K.; Mutombo, K.; Kloppers, C.P. Tensile Properties and Microstructural Characterization of Additive Manufactured, Investment Cast and Wrought Ti6Al4V Alloy. In Proceedings of the IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2019; Volume 655. [Google Scholar]
- Kim, J.H.; Kim, E.J.; Lee, C.M. A Study on the Heat Affected Zone and Machining Characteristics of Difficult-to-Cut Materials in Laser and Induction Assisted Machining. J. Manuf. Process 2020, 57, 499–508. [Google Scholar] [CrossRef]
- Zhou, K.; Wei, B. Determination of the Thermophysical Properties of Liquid and Solid Ti–6Al–4V Alloy. Appl. Phys. A Mater. Sci. Process 2016, 122, 248. [Google Scholar] [CrossRef]
- Agazhanov, A.S.; Samoshkin, D.A.; Kozlovskii, Y.M. Thermophysical Properties of Inconel 718 Alloy. J. Phys. Conf. Ser. 2019, 1382, 012175. [Google Scholar] [CrossRef]
Element | Ti | Nb | Cr | V | Ni | Al |
---|---|---|---|---|---|---|
at % | 34.6 | 20.4 | 10.0 | 10.0 | 15.0 | 10.0 |
Ti-6Al-4V | ||||||||||||
Element | Ti | Al | V | Fe | C | |||||||
wt % | Bal. | 6.5 | 4.3 | 0.15 | 0.02 | |||||||
Inconel 718 | ||||||||||||
Element | Ni | Cr | Fe | Nb | Mo | Ti | Al | Co | ||||
wt % | Bal. | 18.1 | 17.9 | 4.8 | 2.9 | 0.9 | 0.5 | 0.3 |
Laser Power (W) | Scanning Speed (mm/s) | Powder Feed Rate (g/min) | Shield Gas Flow Rate (L/min) |
---|---|---|---|
1000 | 8 | 13 | 15 |
Element (at %) | Ti | Nb | Cr | V | Ni | Al |
---|---|---|---|---|---|---|
Constituents | ||||||
BCC A2 phase | 38.4 | 28.7 | 9.0 | 10.1 | 6.0 | 7.8 |
σ phase | 32.3 | 15.1 | 13.9 | 9.0 | 21.1 | 8.6 |
Ti2Ni phase | 46.2 | 8.2 | 7.0 | 8.8 | 23.8 | 6.0 |
Ti-Nb-Cr-V-Ni-Al | 37.5 | 13.2 | 8.8 | 14.5 | 16.7 | 9.3 |
Nominal composition | 34.6 | 20.4 | 10.0 | 10.0 | 15.0 | 10.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.-I.; Lee, C.-M.; Kim, D.-H. Manufacturing of Ti-Nb-Cr-V-Ni-Al Refractory High-Entropy Alloys Using Direct Energy Deposition. Materials 2022, 15, 6570. https://doi.org/10.3390/ma15196570
Jeong H-I, Lee C-M, Kim D-H. Manufacturing of Ti-Nb-Cr-V-Ni-Al Refractory High-Entropy Alloys Using Direct Energy Deposition. Materials. 2022; 15(19):6570. https://doi.org/10.3390/ma15196570
Chicago/Turabian StyleJeong, Ho-In, Choon-Man Lee, and Dong-Hyeon Kim. 2022. "Manufacturing of Ti-Nb-Cr-V-Ni-Al Refractory High-Entropy Alloys Using Direct Energy Deposition" Materials 15, no. 19: 6570. https://doi.org/10.3390/ma15196570
APA StyleJeong, H. -I., Lee, C. -M., & Kim, D. -H. (2022). Manufacturing of Ti-Nb-Cr-V-Ni-Al Refractory High-Entropy Alloys Using Direct Energy Deposition. Materials, 15(19), 6570. https://doi.org/10.3390/ma15196570