Function Integration in Additive Manufacturing: Design and Realization of an LPBF Built Compressed Air Motor
Abstract
:1. Introduction
2. Experimental Section
2.1. SLM Process
2.2. Device Characterization
2.3. Design
2.4. Rotation Speed Measurement
3. Results
3.1. Part Characterization
3.2. Bearing Gap Distance
3.3. Dependence on Gas Pressure
3.4. Gas Inlet Size
4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kurzynowski, T.; Pawlak, A.; Smolina, I. The potential of SLM technology for processing magnesium alloys in aerospace industry. Archiv. Civ. Mech. Eng. 2020, 20, 23. [Google Scholar] [CrossRef]
- Lorusso, M.; Trevisan, F.; Calignano, F.; Lombardi, M.; Manfredi, D. A357 Alloy by LPBF for Industry Applications. Materials 2020, 13, 1488. [Google Scholar] [CrossRef] [PubMed]
- Safaei, K.; Abedi, H.; Nematollahi, M.; Kordizadeh, F.; Dabbaghi, H.; Bayati, P.; Javanbakht, R.; Jahadakbar, A.; Elahinia, M.; Poorganji, B. Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem. JOM 2021, 73, 3771–3786. [Google Scholar] [CrossRef]
- Plessis, A.D.; Yadroitsava, I.; Yadroitsev, I. Ti6Al4V lightweight lattice structures manufactured by laser powder bed fusion for load-bearing applications. Opt. Laser Technol. 2018, 108, 521–528. [Google Scholar] [CrossRef]
- Biffi, C.A.; Fiocchi, J.; Bassani, P.; Paolino, D.S.; Tridello, A.; Chiandussi, G.; Rossetto, M.; Tuissi, A. Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM. Procedia Struct. Integr. 2017, 7, 50–57. [Google Scholar] [CrossRef]
- Cai, C.; Wu, X.; Liu, W.; Zhu, W.; Chen, H.; Qiu, J.C.D.; Sun, C.-N.; Liu, J.; Wei, Q.; Shi, Y. Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance. J. Mater. Sci. Technol. 2020, 57, 51–64. [Google Scholar] [CrossRef]
- Okaro, I.A.; Jayasinghe, S.; Sutcliffe, C.; Black, K.; Paoletti, P.; Green, P.L. Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Addit. Manuf. 2019, 27, 42–53. [Google Scholar] [CrossRef]
- Yadav, P.; Rigo, O.; Arvieu, C.; le Guen, E.; Lacoste, E. In Situ Monitoring Systems of The SLM Process: On the Need to Develop Machine Learning Models for Data Processing. Crystals 2020, 10, 524. [Google Scholar] [CrossRef]
- Edelmann, A.; Riedel, L.; Hellmann, R. Realization of a Dental Framework by 3D Printing in Material Cobalt-Chromium with Superior Precision and Fitting Accuracy. Materials 2020, 13, 5390. [Google Scholar] [CrossRef]
- Edelmann, A.; Dubis, M.; Hellmann, R. Selective Laser Melting of Patient Individualized Osteosynthesis Plates-Digital to Physical Process Chain. Materials 2020, 13, 5786. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, D.Z.; Dong, P.; Kucukkoc, I. A lightweight and support-free design method for selective laser melting. Int. J. Adv. Manuf. Technol. 2017, 90, 2943–2953. [Google Scholar] [CrossRef]
- Armillotta, A.; Baraggi, R.; Fasoli, S. SLM tooling for die casting with conformal cooling channels. Int. J. Adv. Manuf. Technol. 2014, 71, 573–583. [Google Scholar] [CrossRef]
- Kokareva, V.V.; Smelov, V.G.; Agapovichev, A.V.; Sotov, A.V.; Sufiiarov, V.S. Development of SLM quality system for gas turbines engines parts production. IOP Conf. Ser. Mater. Sci. Eng. 2018, 441, 12024. [Google Scholar] [CrossRef]
- Rühmer, T.T.; Gampe, U.; Fischer, K.A.; Wimmer, T.; Haberland, C. Structural Integrity Assessment and Engine Test of an Additive Manufactured First Stage Ring Segment of a Siemens Large Gas Turbine. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, AZ, USA, 17–21 June 2019. [Google Scholar]
- Yang, Y.; Su, X.; Wang, D.; Chen, Y. Rapid fabrication of metallic mechanism joints by selective laser melting. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 2249–2256. [Google Scholar] [CrossRef]
- Müller-Wilderink, H.; Siqueira, R.; Lippert, B.; Lachmayer, R. Funktions- & Gestaltoptimierung der Pedalerie eines Elektrofahrzeuges für SLM. In Konstruktion für die Additive Fertigung 2019; Lachmayer, R., Rettschlag, K., Kaierle, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 105–119. [Google Scholar]
- Wei, Q.; Li, H.; Liu, G.; He, Y.; Wang, Y.; Tan, Y.E.; Wang, D.; Peng, X.; Yang, G.; Tsubaki, N. Metal 3D printing technology for functional integration of catalytic system. Nat. Commun. 2020, 11, 4098. [Google Scholar] [CrossRef]
- Ao, S.I. Ti-6Al-4V Helical Spring Manufacturing via SLM: Effect of Geometry on Shear Modulus. In Proceedings of the 2013 IAENG International Conference on Communication Systems and Applications, Hong Kong, China, 13–15 March 2013. [Google Scholar]
- Huang, M.; Zhang, Z.; Chen, P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int. J. Adv. Manuf. Technol. 2019, 104, 2117–2131. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Huang, P.-W.; Jhong, K.J.; Tsai, M.-C.; Cheng, C.-W.; Lee, W.-H. Metal 3D Printing of Synchronous Reluctance Motor. In Proceedings of the IEEE International Conference on Industrial Technology, Taipei, Taiwan, 14–17 March 2016. [Google Scholar]
- Wu, S.-T.; Huang, P.-W.; Chang, T.-W.; Jiang, I.-H.; Tsai, M.-C. Application of Magnetic Metal 3-D Printing on the Integration of Axial-Flow Impeller Fan Motor Design. IEEE Trans. Magn. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Wang, L.; Muizelaar, R. Selective laser melting of soft magnetic alloys for automotive applications. In Proceedings of the Advancing Precision in Additive Manufacturing, Nantes, France, 16–18 September 2019. [Google Scholar]
- Lesyk, D.; Martinez, S.; Dzhemelinkyi, V.; Lamikiz, A. Additive Manufacturing of the Superalloy Turbine Blades by Selective Laser Melting: Surface Quality, Microstructure and Porosity. In Lecture Notes in Networks and Systems, New Technologies, Development and Application III; Karabegović, I., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 267–275. [Google Scholar]
- Smelov, V.G.; Sotov, A.V.; Agapovichev, A.V. Research on the possibility of restoring blades while repairing gas turbine engines parts by selective laser melting. IOP Conf. Ser. Mater. Sci. Eng. 2016, 140, 12019. [Google Scholar] [CrossRef]
- Rickenbacher, L.; Etter, T.; Hövel, S.; Wegener, K. High temperature material properties of IN738LC processed by selective laser melting (SLM) technology. Rapid Prototyp. J. 2013, 19, 282–290. [Google Scholar] [CrossRef]
- Chekurov, S.; Lantela, T. Selective Laser Melted Digital Hydraulic Valve System. 3D Print. Addit. Manuf. 2017, 4, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Erin, K. Design for Additive Manufacturing. In Materials Science; VTT Technical Research Centre of Finland: Espoo, Finland, 2016; Volume VTT-R-03159-16. [Google Scholar]
- Mazur, M.; Leary, M.; McMillan, M.; Elambasseril, J.; Brandt, M. SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. RPJ 2016, 22, 504–518. [Google Scholar] [CrossRef]
- Koutiri, I.; Pessard, E.; Peyre, P.; Amlou, O.; de Terris, T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 2018, 255, 536–546. [Google Scholar] [CrossRef]
- Fox, J.C.; Moylan, S.P.; Lane, B.M. Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing. Procedia CIRP 2016, 45, 131–134. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, J.; Rong, Y.; Wu, P.; Feng, T. Effect of Scanning Routes on the Stress and Deformation of Overhang Structures Fabricated by SLM. Materials 2018, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, K.G.; Scudino, S.; Maity, T.; Das, J.; Eckert, J. Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater. Res. Lett. 2017, 5, 386–390. [Google Scholar] [CrossRef]
- Bertoli, U.S.; Wolfer, A.J.; Matthews, M.J.; Delplanque, J.-P.R.; Schoenung, J.M. On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting. Mater. Des. 2017, 113, 331–340. [Google Scholar] [CrossRef]
- Królikowski, M.; Grzesiak, D. Technological Restrictions of Lightweight Lattice Structures Manufactured by Selective Laser Melting of Metals. Adv. Manuf. Sci. Technol. 2014, 38, 75–82. [Google Scholar] [CrossRef]
- Kamarudin, K.; Wahab, M.S.; Raus, A.A.; Ahmed, A.; Shamsudin, S. Benchmarking of dimensional accuracy and surface roughness for AlSi10Mg part by selective laser melting (SLM). AIP Conf. Proc. 2017, 1831, 020047. [Google Scholar]
- Huang, C.-Y.; Hu, C.-K.; Yu, C.-J.; Sung, C.-K. Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine. Energies 2013, 6, 1731–1745. [Google Scholar] [CrossRef] [Green Version]
Ni | Cr | Fe | Nb | Mo | Ti | Al |
---|---|---|---|---|---|---|
50–55 | 17–21 | Balance | 4.7–5.5 | 2.8–3.3 | 0.65–1.15 | 0.2–0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adelmann, B.; Hellmann, R. Function Integration in Additive Manufacturing: Design and Realization of an LPBF Built Compressed Air Motor. Materials 2022, 15, 6632. https://doi.org/10.3390/ma15196632
Adelmann B, Hellmann R. Function Integration in Additive Manufacturing: Design and Realization of an LPBF Built Compressed Air Motor. Materials. 2022; 15(19):6632. https://doi.org/10.3390/ma15196632
Chicago/Turabian StyleAdelmann, Benedikt, and Ralf Hellmann. 2022. "Function Integration in Additive Manufacturing: Design and Realization of an LPBF Built Compressed Air Motor" Materials 15, no. 19: 6632. https://doi.org/10.3390/ma15196632
APA StyleAdelmann, B., & Hellmann, R. (2022). Function Integration in Additive Manufacturing: Design and Realization of an LPBF Built Compressed Air Motor. Materials, 15(19), 6632. https://doi.org/10.3390/ma15196632