Effect of the Mass Fraction of NiTi–TiB2 SHS-Particles on the Phase Composition, Structure, and Mechanical Properties of Inconel 625–NiTi–TiB2 Composites Produced by Direct Laser Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Impact of the Mass Fraction of NiTi–TiB2 Particles on the Phase Composition and Structure of Materials Obtained by Direct Laser Deposition from an Inconel 625–NiTi–TiB2 Powder Mixture
3.2. The Impact of the Mass Fraction of Niti-Tib2 Particles on the Mechanical Properties of Materials Obtained by Direct Laser Deposition from an Inconel 625–NiTi–TiB2 Powder Mixture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Furumoto, T.; Oishi, K.; Abe, S.; Tsubouchi, K.; Yamaguchi, M.; Clare, A.T. Evaluating the thermal characteristics of laser powder bed fusion. J. Mater. Process. Technol. 2022, 299, 117384. [Google Scholar] [CrossRef]
- Simchi, A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng. A 2006, 428, 148–158. [Google Scholar] [CrossRef]
- Wang, X.; Gong, X.; Chou, K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 1890–1903. [Google Scholar] [CrossRef]
- Pinkerton, A.J.; Li, L. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances. J. Phys. D Appl. Phys. 2004, 37, 1885–1895. [Google Scholar] [CrossRef]
- Kruth, J.P.; Leu, M.C.; Nakagawa, T. Progress in additive manufacturing and rapid prototyping. Cirp. Ann. 1998, 47, 525–540. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Giannatsis, J.; Dedoussis, V. Additive fabrication technologies applied to medicine and health care: A review. Int. J. Adv. Manuf. Technol. 2009, 40, 116–127. [Google Scholar] [CrossRef]
- Sungail, C.; Abid, A. Spherical tantalum feed powder for metal additive manufacturing. Met. Powder Rep. 2018, 73, 316–318. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Bonney, J.; Yamane, Y. An overview of the machinability of aeroengine alloys. J. Mater. Process. Technol. 2003, 134, 233–253. [Google Scholar] [CrossRef]
- Philips, N.R.; Carl, M.; Cunningham, N.J. New opportunities in refractory alloys. Metall. Mater. Trans. A. 2020, 51, 3299–3310. [Google Scholar] [CrossRef]
- Rahman, M.; Seah, W.K.H.; Teo, T.T. The machinability of Inconel 718. J. Mater. Process. Technol. 1997, 63, 199–204. [Google Scholar] [CrossRef]
- Rao, H.; Oleksak, R.P.; Favara, K.; Harooni, A.; Dutta, B.; Maurice, D. Behavior of yttria-stabilized zirconia (YSZ) during laser direct energy deposition of an Inconel 625-YSZ cermet. Addit. Manuf. 2020, 31, 100932. [Google Scholar] [CrossRef]
- Matveev, A.; Zhukov, I.; Ziatdinov, M.; Zhukov, A. Planetary Milling and Self-Propagating High-Temperature Synthesis of Al-TiB2 Composites. Materials 2020, 13, 1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashim, J.; Looney, L.; Hashmi, M.S.J. Metal matrix composites: Production by the stir casting method. J. Mater. Process. Technol. 1999, 92, 1–7. [Google Scholar] [CrossRef]
- Tjong, S.C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 2007, 9, 639–652. [Google Scholar] [CrossRef]
- Rawal, S.P. Metal-matrix composites for space applications. JOM 2001, 53, 14–17. [Google Scholar] [CrossRef]
- Gupta, P.K.; Srivastava, R.K. Fabrication of Ceramic Reinforcement Aluminium and Its Alloys Metal Matrix Composite Materials: A Review. Mater. Today Proc. 2018, 5, 18761–18775. [Google Scholar] [CrossRef]
- Mu, W.; Dogan, N.; Coley, K.S. In Situ Observations of Agglomeration of Non-metallic Inclusions at Steel/Ar and Steel/Slag Interfaces by High-Temperature Confocal Laser Scanning Microscope: A Review. JOM 2018, 70, 1199–1209. [Google Scholar] [CrossRef]
- Promakhov, V.; Matveev, A.; Klimova-Korsmik, O.; Schulz, N.; Bakhmat, V.; Babaev, A.; Vorozhtsov, A. Structure and Properties of Metal-Matrix Composites Based on an Inconel 625–TiB2 System Fabricated by Additive Manufacturing. Metals 2022, 12, 525. [Google Scholar] [CrossRef]
- Promakhov, V.; Matveev, A.; Schulz, N.; Grigoriev, M.; Olisov, A.; Vorozhtsov, A.; Zhukov, A.; Klimenko, V. High-Temperature Synthesis of Metal–Matrix Composites (Ni-Ti)-TiB2. Appl. Sci. 2021, 11, 2426. [Google Scholar] [CrossRef]
- Ladd, M.; Palmer, R. Structure Determination by X-ray Crystallography. In Analysis by X-rays and Neutrons; Springer: New York, NY, USA, 2013; p. 784. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Kai, W.Y.; Chang, K.C.; Wu, H.F.; Chen, S.W.; Yeh, A.C. Formation mechanism of Ni2Ti4Ox in NITI shape memory alloy. Materialia 2019, 5, 100194. [Google Scholar] [CrossRef]
- Kovalev, D.Y.; Khomenko, N.Y.; Shilkin, S.P. Thermal expansion of the nanocrystalline titanium diboride. Ceram. Int. 2022, 48, 872–878. [Google Scholar] [CrossRef]
- Qi, J.; Halloran, J.W. Negative thermal expansion artificial material from iron-nickel alloys by oxide co-extrusion with reductive sintering. J. Mater. Sci. 2004, 39, 4113–4118. [Google Scholar] [CrossRef]
- Verdian, M.M. Fabrication of supersaturated NiTi (Al) alloys by mechanical alloying. Mater. Manuf. Processes 2010, 25, 1437–1439. [Google Scholar] [CrossRef]
- Khoshkhoo, M.S.; Scudino, S.; Thomas, J.; Surreddi, K.B.; Eckert, J. Grain and crystallite size evaluation of cryomilled pure copper. J. Alloy. Compd. 2011, 509, 343–347. [Google Scholar] [CrossRef]
- Basu, B.; Raju, G.B.; Suri, A.K. Processing and properties of monolithic TiB2 based materials. Int. Mater. Rev. 2006, 51, 352–374. [Google Scholar] [CrossRef]
- Zhukov, I.A.; Promakhov, V.V.; Matveev, A.E.; Platov, V.V.; Khrustalev, A.P.; Dubkova, Y.A.; Vorozhtsov, S.A.; Potekaev, A.I. Principles of structure and phase composition formation in composite master alloys of the Al–Ti–B/B4C systems used for aluminum alloy modification. Russ. Phys. J. 2018, 60, 2025–2031. [Google Scholar] [CrossRef]
- Li, Y.; Gu, D.; Zhang, H.; Xi, L. Effect of Trace Addition of Ceramic on Microstructure development and mechanical properties of selective laser melted AlSi10Mg alloy. Chin. J. Mech. Eng. 2020, 33, 1–13. [Google Scholar] [CrossRef]
- Attar, H.; Bönisch, M.; Calin, M.; Zhang, L.C.; Scudino, S.; Eckert, J. Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties. Acta Mater. 2014, 76, 13–22. [Google Scholar] [CrossRef]
- Chatterjee, A.; Basak, T.; Ayappa, K.G. Analysis of microwave sintering of ceramics. AIChE J. 1998, 44, 2302–2311. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.C.; Kim, M.T.; Lee, S.; Chung, H.; Ahn, J.H. Effects of copper addition on the sintering behavior and mechanical properties of powder processed Al/SiC p composites. J. Mater. Sci. 2005, 40, 441–447. [Google Scholar] [CrossRef]
- Natarajan, S.; Narayanasamy, R.; Kumaresh Babu, S.P.; Denish, G.; Anil Kumar, B.; Sivaprasad, K. Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures. Mater. Des. 2009, 30, 2521–2531. [Google Scholar] [CrossRef]
- Stalin, B.; Ravichandran, M.; Sudna, G.T.; Karthick, A.; Soorya Prakash, K.; Benjamin Asirdason, A.; Saravanan, S. Effect of titanium diboride ceramic particles on mechanical and wear behaviour of Cu-10 wt% W alloy composites processed by P/M route. Vacuum 2021, 184, 109895. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Wang, J.; Li, Z.; Xie, J.; Liu, S.; Guan, K.; Wu, R. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater. 2021, 28, 30–45. [Google Scholar] [CrossRef]
- Birol, Y. Impact of grain size on mechanical properties of AlSi7Mg0. 3 alloy. Mater. Sci. Eng. A 2013, 559, 394–400. [Google Scholar] [CrossRef]
- Floreen, S.; Westbrook, J.H. Grain boundary segregation and the grain size dependence of strength of nickel-sulfur alloys. Acta Metall. 1969, 17, 1175–1181. [Google Scholar] [CrossRef]
- Promakhov, V.; Zhukov, A.; Ziatdinov, M.; Zhukov, I.; Schulz, N.; Kovalchuk, S.; Dubkova, Y.; Korsmik, R.; Klimova-Korsmik, O.; Turichin, G.; et al. Inconel 625/TiB2 Metal Matrix Composites by Direct Laser Deposition. Metals 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Dorey, R.A.; Yeomans, J.A.; Smith, P.A. Effect of pore clustering on the mechanical properties of ceramics. J. Eur. Ceram. Soc. 2002, 22, 403–409. [Google Scholar] [CrossRef]
- Xu, F.; Lv, Y.; Liu, Y.; Shu, F.; He, P.; Xu, B. Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process. J. Mater. Sci. Technol. 2013, 29, 480–488. [Google Scholar] [CrossRef]
Beam Diameter in the Treatment Area, mm | Power, W | Side Bead Deposition Rate, mm/s | Intermediate Bead Deposition Rate, mm/s | Powder Consumption, g/min | X Offset, mm | Z Offset, mm |
---|---|---|---|---|---|---|
1.5 | 500 | 10 | 15 | 5.1 | 0.7 | 0.2 |
Sample of Inconel 625 + x wt% NiTi–TiB2 | Detected Phases | Phase Content, Mass % | Lattice Parameters, Ǻ | CSR Size, nm |
---|---|---|---|---|
x = 5 | Ni | 96 | a = 3.5241 | 125 |
TiB2 | <4 | a = 2.9468 | 16 | |
c = 3.1359 | ||||
x = 10 | Ni | 94 | a = 3.5239 | 115 |
TiB2 | 6 | a = 2.9765 | 18 | |
c = 3.1989 | ||||
x = 30 | Ni | 75 | a = 3.5241 | 105 |
TiB2 | 16 | a = 3.0234 | 35 | |
c = 3.2202 | ||||
NiTi | 9 | a = 2.9990 | 56 | |
x = 50 | Ni | 56 | a = 3.5236 | 90 |
TiB2 | 27 | a = 3.0233 | 48 | |
c = 3.2205 | ||||
NiTi | 17 | a = 3.0111 | 38 | |
x = 70 | Ni | 37 | a = 3.5239 | 77 |
TiB2 | 38 | a = 3.0238 | 67 | |
c = 3.2208 | ||||
NiTi | 25 | a = 3.0113 | 23 | |
x = 90 | Ni | 18 | a = 3.5231 | 53 |
TiB2 | 49 | a = 3.0236 | 88 | |
c = 3.2205 | ||||
NiTi | 33 | a = 3.0118 | 11 |
Properties | Inconel 625 + 5 wt% NiTi–TiB2 | Inconel 625 + 10 wt% NiTi–TiB2 | Inconel 625 [41] |
---|---|---|---|
Microhardness | 460 HV | 532 HV | 275 HV |
Tensile strength | 930 MPa | 970 MPa | 721 MPa |
Deformation | 33% | 28% | 49% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveev, A.; Promakhov, V.; Schulz, N.; Bakhmat, V.; Babaev, A.; Semenov, A.; Vorozhtsov, A. Effect of the Mass Fraction of NiTi–TiB2 SHS-Particles on the Phase Composition, Structure, and Mechanical Properties of Inconel 625–NiTi–TiB2 Composites Produced by Direct Laser Deposition. Materials 2022, 15, 6861. https://doi.org/10.3390/ma15196861
Matveev A, Promakhov V, Schulz N, Bakhmat V, Babaev A, Semenov A, Vorozhtsov A. Effect of the Mass Fraction of NiTi–TiB2 SHS-Particles on the Phase Composition, Structure, and Mechanical Properties of Inconel 625–NiTi–TiB2 Composites Produced by Direct Laser Deposition. Materials. 2022; 15(19):6861. https://doi.org/10.3390/ma15196861
Chicago/Turabian StyleMatveev, Alexey, Vladimir Promakhov, Nikita Schulz, Vladislav Bakhmat, Artem Babaev, Artem Semenov, and Alexander Vorozhtsov. 2022. "Effect of the Mass Fraction of NiTi–TiB2 SHS-Particles on the Phase Composition, Structure, and Mechanical Properties of Inconel 625–NiTi–TiB2 Composites Produced by Direct Laser Deposition" Materials 15, no. 19: 6861. https://doi.org/10.3390/ma15196861
APA StyleMatveev, A., Promakhov, V., Schulz, N., Bakhmat, V., Babaev, A., Semenov, A., & Vorozhtsov, A. (2022). Effect of the Mass Fraction of NiTi–TiB2 SHS-Particles on the Phase Composition, Structure, and Mechanical Properties of Inconel 625–NiTi–TiB2 Composites Produced by Direct Laser Deposition. Materials, 15(19), 6861. https://doi.org/10.3390/ma15196861