Effect of Surface-Etching Treatment, Glaze, and the Antagonist on Roughness of a Hybrid Ceramic after Two-Body Wear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation and Characterization
2.2. Two-Body Abrasive Wear
2.3. Roughness
2.4. Scanning Electron Microscopy (SEM)
2.5. Data Analysis
3. Results
3.1. Wear and Roughness Analyses
3.2. Scanning Electron Microscopy (SEM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fasbinder, D.J. Clinical performance of chairside CAD/CAM restorations. J. Am. Dent. Assoc. 2006, 137, 22S–31S. [Google Scholar] [CrossRef] [PubMed]
- Fasbinder, D.J. The CEREC system: 25 years of chairside CAD/CAM dentistry. J. Am. Dent. Assoc. 2010, 141, 3S–4S. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Grangeiro, M.T.V.; Rossi, N.R.; Barreto, L.A.L.; Bottino, M.A.; Tribst, J.P.M. Effect of different surface treatments on the bond strength of the hybrid ceramic characterization layer. J. Adhes. Dent. 2021, 23, 429–435. [Google Scholar] [CrossRef]
- Schwenter, J.; Schmidli, F.; Weiger, R.; Fischer, J. Adhesive bonding to polymer infiltrated ceramic. Dent. Mater. J. 2016, 35, 796–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Corazza, P.H.; Zhang, Y. Characterization of a polymer-infiltrated ceramic-network material. Dent. Mater. 2014, 30, 564–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özarslan, M.M.; Büyükkaplan, U.Ş.; Barutcigil, Ç.; Arslan, M.; Türker, N.; Barutcigil, K. Effects of different surface finishing procedures on the change in surface roughness and color of a polymer infiltrated ceramic network material. J. Adv. Prosthodont. 2016, 8, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Anami, L.C.; Pereira, C.A.; Guerra, E.; Souza, R.O.D.A.; Jorge, A.O.C.; Bottino, M.A. Morphology and bacterial colonisation of tooth/ceramic restoration interface after different cement excess removal techniques. J. Dent. 2012, 40, 742–749. [Google Scholar] [CrossRef]
- Lesage, B. Finishing and polishing criteria for minimally invasive composite restorations. Gen. Dent. 2011, 59, 422–428. [Google Scholar]
- Heintze, S.D.; Cavalleri, A.; Forjanic, M.; Zellweger, G.; Rousson, V. Wear of ceramic and antagonist-a systematic evaluation of influencing factors in vitro. Dent. Mater. 2008, 24, 433–449. [Google Scholar] [CrossRef]
- Rekow, D.; Thompson, V.P. Near-surface damage—a persistent problem in crowns obtained by computer-aided design and manufacturing. J. Eng. Med. 2005, 219, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Chi, W.J.; Browning, W.; Looney, S.; Mackert, J.R.; Windhorn, R.J.; Rueggeberg, F. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques. US Army Med. Dept. 2017, 17, 71–79. [Google Scholar]
- Garza, L.A.; Thompson, G.; Cho, S.H.; Berzins, D.W. Effect of toothbrushing on shade and surface roughness of extrinsically stained pressable ceramics. J. Prosthet. Dent. 2016, 115, 489–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vichi, A.; Fonzar, R.F.; Goracci, C.; Carrabba, M.; Ferrari, M. Effect of finishing and polishing on roughness and gloss of lithium disilicate and lithium silicate zirconia reinforced glass ceramic for CAD/CAM systems. Oper. Dent. 2018, 43, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Ludovichetti, F.S.; Trindade, F.Z.; Werner, A.; Kleverlaan, C.J.; Fonseca, R.G. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J. Prosthet. Dent. 2018, 120, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Mehta, S.B.; Banerji, S.; Millar, B.J.; Suarez-Feito, J.M. Current concepts on the management of tooth wear: Part 4. An overview of the restorative techniques and dental materials commonly applied for the management of tooth wear. Br. Dent. J. 2012, 212, 169–177. [Google Scholar] [CrossRef]
- Kurt, M.; Güngör, M.B.; Nemli, S.K.; Bal, B.T. Effects of glazing methods on the optical and surface properties of silicate ceramics. J. Prosthodont. Res. 2020, 64, 202–209. [Google Scholar] [CrossRef]
- Incesu, E.; Yanikoglu, N. Evaluation of the effect of different polishing systems on the surface roughness of dental ceramics. J. Prosthet. Dent. 2019, 124, 100–109. [Google Scholar] [CrossRef]
- Lucsanszky, I.J.; Ruse, N.D. Fracture toughness, flexural strength and flexural modulus of new CAD/CAM resin composite blocks. J. Prosthodont. 2019, 29, 34–41. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Werner, A.; Anami, L.C.; Bottino, M.A.; Kleverlaan, C.J. Durability of staining and glazing on a hybrid ceramics after the three-body wear. J. Mech. Behav. Biomed. Mater. 2020, 109, 103856. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Ma, Y.; Liu, W.; Meng, Y.; Nakamura, K.; Shen, J.; Wang, H. Influence of low-temperature degradation on the wear characteristics of zirconia against polymer-infiltrated ceramic-network material. J. Prosthet. Dent. 2018, 120, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Zhi, L.; Bortolotto, T.; Krejci, I. Comparative in vitro wear resistance of CAD/CAM composite resin and ceramic materials. J. Prosthet. Dent. 2016, 115, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Arola, D.D.; Yu, D.; Yu, P.; Zhang, Q.; Yu, H.; Gao, S. Comparison of human enamel and polymer-infiltrated-ceramic-network material “ENAMIC” through micro-and nano-mechanical testing. Ceram. Int. 2016, 42, 10631–10637. [Google Scholar] [CrossRef]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Borges, A.L.S.; Souza, R.O.A.E.; Bottino, M.A. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent. Mater. 2018, 34, 1342–1350. [Google Scholar] [CrossRef] [Green Version]
- Ghazal, M.; Yang, B.; Ludwig, K.; Kern, M. Two-body wear of resin and ceramic denture teeth in comparison to human enamel. Dent. Mater. 2008, 24, 502–507. [Google Scholar] [CrossRef]
- Al-Shatti, R.A.; Dashti, G.H.; Philip, S.; Michael, S.; Swain, M.V. Size or hierarchical dependence of the elastic modulus of three ceramic-composite CAD/CAM materials. Dent. Mater. 2019, 35, 953–962. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, P.; Arola, D.D.; Min, J.; Gao, S. A comparative study on the wear behavior of a polymer infiltrated ceramic network (PICN) material and tooth enamel. Dent. Mater. 2017, 33, 1351–1361. [Google Scholar] [CrossRef]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Werner, A.; Anami, L.C.; Bottino, M.A.; Kleverlaan, C.J. Three-body wear effect on different CAD/CAM ceramics staining durability. J. Mech. Behav. Biomed. Mater. 2020, 103, 103579. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Gaintantzopoulou, M.D. Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J. Prosthod. Res. 2018, 62, 75–83. [Google Scholar] [CrossRef]
- Emsermann, I.; Eggmann, F.; Krastl, G.; Weiger, R.; Amato, J. Influence of pretreatment methods on the adhesion of composite and polymer infiltrated ceramic CAD-CAM blocks. J. Adhes. Dent. 2019, 21, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Al-Harthi, A.A.; Aljoudi, M.H.; Almaliki, M.N.; El-Banna, K.A. Laboratory study of micro-shear bond strength of two resin cements to leucite ceramics using different ceramic primers. J. Contemp. Dent. Pract. 2018, 19, 918–924. [Google Scholar] [CrossRef] [PubMed]
Material | Brand | Manufacturer | Composition |
---|---|---|---|
Hybrid ceramic (PICN) | Vita Enamic | Vita Zahnfabrik | 86w% feldspathic ceramic: SiO2 58–63%, Al2O3 20–23%, Na2O 9–11%, K2O 4–6%, 14w% polymer: TEGDMA,UDMA |
Etching agent | Vita adiva® cera-etch | Vita Zahnfabrik | 5% hydrofluoridric acid |
Ceramic primer | Vita adiva® c-prime | Vita Zahnfabrik | Solution of methacrylsilanes in ethanol |
Self-etching ceramic primer | Monobond Etch & Prime | Ivoclar Vivadent | Butanol, tetrabutylammonium dihydrogen trifluoride, methacrylated phosphoric acid ester, bis(triethoxysilyl)ethane, silane methacrylate, colourant, ethanol, water |
Stain | Vita enamic® stain | Vita Zahnfabrik | Cristobalite, dibenzoyl peroxide, dicyclohexyl phthalate |
Stains liquid | Vita enamic® stains liquid | Vita Zahnfabrik | methyl methacrylate, aromatic urethanacrylate |
Glaze | Vita enamic® glaze | Vita Zahnfabrik | methyl methacrylate, 2-Propenoic acid, reaction product with Pentaerythrite, Diphenyl (2,4,6-trimethylbenzoyl) phosphinoxide |
Air spray: Al2O3 | Aluminium oxide | Bio Art | Al2O3 50 µm |
Groups | Surface Treatments | Finishing |
---|---|---|
P | Polishing | - |
PG | Glaze | |
E | 5% hydrofluoric etching (E) for 60 s, cleaning (ultra-sonic bath with distilled water for 5 min), and silanization. | Stain |
EG | Stain plus Glaze | |
A | Aluminum oxide (Al2O3) 50 μm at 1 bar sandblasting, cleaning (ultra-sonic bath with distilled water for 5 min), and silanization. | Stain |
AG | Stain plus Glaze | |
S | Silanization with etch-prime adhesive (S) and cleaning (ultra-sonic bath with distilled water for 5 min). | Stain |
SG | Stain plus Glaze |
Mass Loss of the PIC Discs | Mass Loss of the Antagonist Piston | |||
---|---|---|---|---|
Steatite | PICN | Steatite | PICN | |
P | 0.0029 ± 0.001 BC | 0.0030 ± 0.001 | 0.0014 ± 0.003 A | 0.0.001 ± 0.0001 |
PG | 0.0018 ± 0.00 C | 0.0021 ± 0.001 | 0.0014 ± 0.001 B | 0.0001 ± 0.0001 |
E | 0.0034 ± 0.001 BC | 0.0010 ± 0.000 | 0.0010 ± 0.001 D | 0.0001 ± 0.0001 |
EG | 0.0020 ± 0.001 C | 0.0017 ± 0.000 | 0.0014 ± 0.003 A | 0.0001 ± 0.0001 |
A | 0.0011 ± 0.000 C | 0.0026 ± 0.001 | 0.0005 ± 0.001 C | 0.0001 ± 0.0001 |
AG | 0.0042 ± 0.002 A | 0.0024 ± 0.001 | 0.0001 ± 0.001 D | 0.0001 ± 0.0000 |
S | 0.0036 ± 0.001 B | 0.0022 ± 0.001 | 0.0006 ± 0.001 C | 0.0001 ± 0.0000 |
SG | 0.0029 ± 0.001 BC | 0.0023 ± 0.001 | 0.0004 ± 0.003 C | 0.0001 ± 0.0000 |
Steatite | PICN | |
---|---|---|
P | 0.37 ± 0.17 Ba | 0.36 ± 0.28 Ba |
PG | 0.36 ± 0.27 Aa | 0.32 ± 0.20 Ab |
E | 0.32 ± 0.17 Ba | 0.41 ± 0.24 Ba |
EG | 0.29 ± 0.08 Ba | 0.38 ± 0.26 Aa |
A | 0.21 ± 0.02 Cb | 0.69 ± 0.43 Aa |
AG | 0.24 ± 0.11 Ba | 0.28 ± 0.06 Aa |
S | 0.82 ± 0.19 Aa | 0.24 ± 0.14 Bb |
SG | 0.36 ± 0.12 Ba | 0.20 ± 0.08 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grangeiro, M.T.V.; Rodrigues, C.d.S.; Rossi, N.R.; da Silva, J.M.D.; Ramos, N.d.C.; Tribst, J.P.M.; Anami, L.C.; Bottino, M.A. Effect of Surface-Etching Treatment, Glaze, and the Antagonist on Roughness of a Hybrid Ceramic after Two-Body Wear. Materials 2022, 15, 6870. https://doi.org/10.3390/ma15196870
Grangeiro MTV, Rodrigues CdS, Rossi NR, da Silva JMD, Ramos NdC, Tribst JPM, Anami LC, Bottino MA. Effect of Surface-Etching Treatment, Glaze, and the Antagonist on Roughness of a Hybrid Ceramic after Two-Body Wear. Materials. 2022; 15(19):6870. https://doi.org/10.3390/ma15196870
Chicago/Turabian StyleGrangeiro, Manassés Tercio Vieira, Camila da Silva Rodrigues, Natália Rivoli Rossi, Jadson Mathyas Domingos da Silva, Nathalia de Carvalho Ramos, João Paulo Mendes Tribst, Lilian Costa Anami, and Marco Antonio Bottino. 2022. "Effect of Surface-Etching Treatment, Glaze, and the Antagonist on Roughness of a Hybrid Ceramic after Two-Body Wear" Materials 15, no. 19: 6870. https://doi.org/10.3390/ma15196870
APA StyleGrangeiro, M. T. V., Rodrigues, C. d. S., Rossi, N. R., da Silva, J. M. D., Ramos, N. d. C., Tribst, J. P. M., Anami, L. C., & Bottino, M. A. (2022). Effect of Surface-Etching Treatment, Glaze, and the Antagonist on Roughness of a Hybrid Ceramic after Two-Body Wear. Materials, 15(19), 6870. https://doi.org/10.3390/ma15196870