Relation between Ga Vacancies, Photoluminescence, and Growth Conditions of MOVPE-Prepared GaN Layers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Variable Energy Positron Annihilation Spectroscopy
3.2. Photoluminescence
3.3. Secondary Ion Mass Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakamura, S. Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes. Rev. Mod. Phys. 2015, 87, 1139–1151. [Google Scholar] [CrossRef]
- Mishra, U.K.; Parikh, P.; Wu, Y.F. AlGaN/GaN HEMTs—An overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Li, D.B.; Sun, X.J.; Song, H.; Li, Z.M.; Chen, Y.R.; Jiang, H.; Miao, G. Q Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 2012, 24, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, C.J.; Toledo, N.G.; Cruz, S.C.; Iza, M.; DenBaars, S.P.; Mishra, U.K. High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl. Phys. Lett. 2008, 93, 143502. [Google Scholar] [CrossRef]
- Hospodková, A.; Nikl, M.; Pacherová, O.; Oswald, J.; Brůža, P.; Pánek, D.; Foltynski, B.; Hulicius, E.; Beitlerová, A.; Heuken, M. InGaN/GaN multiple quantum well for fast scintillation application: Radioluminescence and photoluminescence study. Nanotechnology 2014, 25, 455501. [Google Scholar] [CrossRef]
- Nykanen, H.; Suihkonen, S.; Kilanski, L.; Sopanen, M.; Tuomisto, F. Low energy electron beam induced vacancy activation in GaN. Appl. Phys. Lett. 2012, 69, 122105. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, J.; Van de Walle, C.G. Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett. 1996, 69, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Saarinen, K.; Laine, T.; Kuisma, S.; Nissila, J.; Hautojarvi, P.; Dobrzynski, L.; Baranowski, J.M.; Pakula, K.; Stepniewski, R.; Wojdak, M.; et al. Observation of native Ga vacancies in GaN by positron annihilation. Phys. Rev. Lett. 1997, 79, 3030–3033. [Google Scholar] [CrossRef]
- Lyons, J.L.; Van de Walle, C.G. Computationally predicted energies and properties of defects in GaN. NPJ Comput. Mater. 2017, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Bojarska, A.; Muziol, G.; Skierbiszewski, C.; Grzanka, E.; Wisniewski, P.; Makarowa, I.; Czernecki, R.; Suski, T.; Perlin, P. Influence of the growth method on degradation of InGaN laser diodes. Appl. Phys. Express 2017, 10, 091001. [Google Scholar] [CrossRef]
- Gutt, R.; Kohler, K.; Wiegert, J.; Kirste, L.; Passow, T.; Wagner, J. Controlling the Mg doping profile in MOVPE-grown GaN/Al0.2Ga0.8N light-emitting diodes. Phys. Status Solidi C 2011, 8, 2072–2074. [Google Scholar] [CrossRef]
- Chichibu, S.F.; Uedono, A.; Kojima, K.; Ikeda, H.; Fujito, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN. J. Appl. Phys. 2018, 123, 161413. [Google Scholar] [CrossRef] [Green Version]
- Krause-Rehberg, R.; Leipner, H. Positron Annihilation in Semiconductors: Defect Studies, 1st ed.; Springer: Berlin, Germany, 1999. [Google Scholar]
- Čížek, J. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review. J. Mater. Sci. Technol. 2018, 34, 577–598. [Google Scholar] [CrossRef]
- Schultz, P.; Lynn, K.G. Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 1988, 60, 701–801. [Google Scholar] [CrossRef]
- Hugenschmidt, C. Positrons insurface physics. Surf. Sci. Rep. 2016, 71, 547–594. [Google Scholar] [CrossRef] [Green Version]
- Puska, M.J.; Nieminen, R.J. Theory of positrons in solids and on solid surfaces. Rev. Mod. Phys. 1994, 66, 841–899. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Butterling, M.; Liedke, M.O.; Potzger, K.; Krause-Rehberg, R. Positron Annihilation Lifetime and Doppler Broadening Spectroscopy at the ELBE Facility. AIP Conf. Proc. 1980, 1970, 40003. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, F.; Gippner, P.; Grosse, E.; Janssen, D.; Michel, P.; Prade, H.; Schamlott, A.; Seidel, W.; Wolf, A.; Wünsch, R. The Rossendorf radiation source ELBE and its FEL projects. Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 161, 1143–1147. [Google Scholar] [CrossRef]
- The Global Leader in Materials Testing Services. EAG Laboratories. Available online: https://www.eag.com/ (accessed on 21 October 2021).
- West, R.N. Positron studies of condensed matter. Adv. Phys. 1973, 22, 263–383. [Google Scholar] [CrossRef]
- Mendelev, M.I.; Bokstein, B.S. Molecular dynamics study of self-diffusion in Zr. Philos. Mag. 2010, 90, 637–654. [Google Scholar] [CrossRef]
- Xing, G.; Ye, Z.Z. Selection of precursors and their influences on III-nitrides grown by MOCVD. J. Microw. Optoelectron. Electromagn. Appl. 2002, 2, 1–16. [Google Scholar]
- Hautakangas, S.; Makkonen, I.; Ranki, V.; Puska, J.; Saarinen, K.; Xu, X.; Look, D.C. Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy. Phys. Rev. B 2006, 73, 163301. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.J.; Sui, Y.; Buckeridge, J.; Catlow, C.R.A.; Keal, T.W.; Sherwood, P.; Walsh, A.; Farrow, M.R.; Scanlon, D.O.; Woodly, S.M.; et al. Donor and acceptor characteristics of native point defects in GaN. J. Phys. D Appl. Phys. 2019, 52, 335104. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, R.B.; Rivelino, R.; Mota, F.D.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Feasibility of novel (H3C)(n)X(SiH3) (3-n) compounds (X = B, Al, Ga, In): Structure, stability, reactivity, and Raman characterization from ab initio calculations. Dalton Trans. 2015, 44, 3356–3366. [Google Scholar] [CrossRef] [Green Version]
- Freitas, R.R.Q.; Gueorguiev, G.K.; Mota, F.D.; de Castilho, C.M.C.; Stafstrom, S.; Kakanakova-Georgieva, A. Reactivity of adducts relevant to the deposition of hexagonal BN from first-principles calculations. Chem. Phys. Lett. 2013, 583, 119–124. [Google Scholar] [CrossRef]
- Lyons, J.L.; Janotti, A.; Van de Walle, C.G. Carbon impurities and the yellow luminescence in GaN. Appl. Phys. Lett. 2010, 97, 152108. [Google Scholar] [CrossRef]
- Demchenko, D.O.; Diallo, I.C.; Reshchikov, M.A. Yellow Luminescence of Gallium Nitride Generated by Carbon Defect Complexes. Phys. Rev. Lett. 2013, 110, 87404. [Google Scholar] [CrossRef]
- Christenson, S.G.; Xie, W.Y.; Sun, Y.Y.; Zhang, S.B. Carbon as a source for yellow luminescence in GaN: Isolated C-N defect or its complexes. J. Appl. Phys. 2015, 118, 135708. [Google Scholar] [CrossRef]
- Lyons, J.L.; Alkauskas, A.; Janotti, A.; Van de Walle, C.G. First-principles theory of acceptors in nitride semiconductors. Phys. Status Solidi B 2015, 252, 900–908. [Google Scholar] [CrossRef]
- Xie, Z.J.; Sui, Y.; Buckeridge, J.; Sokol, A.A.; Keal, T.W.; Walsh, A. Prediction of multiband luminescence due to the gallium vacancy-oxygen defect complex in GaN. Appl. Phys. Lett. 2018, 112, 262104. [Google Scholar] [CrossRef]
- Dreyer, C.E.; Alkauskas, A.; Lyons, J.L.; Speck, J.S.; Van de Walle, C.G. Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. Appl. Phys. Lett. 2016, 108, 141101. [Google Scholar] [CrossRef]
- Zimmermann, F.; Beyer, J.; Roder, C.; Beyer, F.C.; Richter, E.; Irmscher, K.; Heitmann, J. Current Status of Carbon-Related Defect Luminescence in GaN. Phys. Status Solidi A 2021, 218, 2100235. [Google Scholar] [CrossRef]
- Čížek, J. PLRF Code for Decomposition of Positron Lifetime Spectra. Acta Phys. Pol. A 2020, 137, 177–187. [Google Scholar] [CrossRef]
- Mogensen, O.E. Positron Annihilation Chemistry, 1st ed.; Springer: Berlin, Germany, 1995. [Google Scholar]
Samples | Temperature | Precursor | |
---|---|---|---|
N2 atmosphere | H2 atmosphere | ||
TEN1 | TEH1 | 850 °C | TEGa |
TEN2 | TEH2 | 900 °C | TEGa |
TEN3 | TEH3 | 950 °C | TEGa |
TMN1 | TMH1 | 950 °C | TMGa |
TMN2 | TMH2 | 1025 °C | TMGa |
TMN3 | TMH3 | 1100 °C | TMGa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hospodková, A.; Čížek, J.; Hájek, F.; Hubáček, T.; Pangrác, J.; Dominec, F.; Kuldová, K.; Batysta, J.; Liedke, M.O.; Hirschmann, E.; et al. Relation between Ga Vacancies, Photoluminescence, and Growth Conditions of MOVPE-Prepared GaN Layers. Materials 2022, 15, 6916. https://doi.org/10.3390/ma15196916
Hospodková A, Čížek J, Hájek F, Hubáček T, Pangrác J, Dominec F, Kuldová K, Batysta J, Liedke MO, Hirschmann E, et al. Relation between Ga Vacancies, Photoluminescence, and Growth Conditions of MOVPE-Prepared GaN Layers. Materials. 2022; 15(19):6916. https://doi.org/10.3390/ma15196916
Chicago/Turabian StyleHospodková, Alice, Jakub Čížek, František Hájek, Tomáš Hubáček, Jiří Pangrác, Filip Dominec, Karla Kuldová, Jan Batysta, Maciej O. Liedke, Eric Hirschmann, and et al. 2022. "Relation between Ga Vacancies, Photoluminescence, and Growth Conditions of MOVPE-Prepared GaN Layers" Materials 15, no. 19: 6916. https://doi.org/10.3390/ma15196916
APA StyleHospodková, A., Čížek, J., Hájek, F., Hubáček, T., Pangrác, J., Dominec, F., Kuldová, K., Batysta, J., Liedke, M. O., Hirschmann, E., Butterling, M., & Wagner, A. (2022). Relation between Ga Vacancies, Photoluminescence, and Growth Conditions of MOVPE-Prepared GaN Layers. Materials, 15(19), 6916. https://doi.org/10.3390/ma15196916