Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- López-Gándara, C.; Ramos, F.M.; Cirera, A. YSZ-based oxygen sensors and the use of nanomaterials: A review from classical models to current trends. J. Sens. 2009, 2009, 258489. [Google Scholar] [CrossRef]
- Badwal, S.P.S.; Foger, K. Solid oxide fuel cell electrolyte review. Ceram. Int. 1996, 22, 257–265. [Google Scholar] [CrossRef]
- Shuk, P. Process Zirconia Oxygen Analyzer—State of Art Zirkondioxid-Sauerstoffsensoren—Stand der Technik. TM. Tech. Mess. 2010, 77, 19–23. [Google Scholar] [CrossRef]
- Zhuiykov, S. Electrochemistry of Zirconia Gas Sensors; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Milshtein, J.D.; Gratz, E.; Pati, S.; Powell, A.C.; Pal, U. Yttria stabilized zirconia membrane stability in molten fluoride fluxes for low-carbon magnesium production by the SOM process. J. Min. Metall. Sect. 2013, 49, 183–190. [Google Scholar] [CrossRef]
- Hwang, K.J.; Shin, M.; Lee, M.H.; Lee, H.; Oh, M.Y.; Shin, T.H. Investigation on the phase stability of yttria-stabilized zirconia electrolytes for high-temperature electrochemical application. Ceram. Int. 2019, 45, 9462–9467. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Wang, X.; Yu, J.; Li, L. A review of zirconia-based solid electrolytes. Ionics 2016, 22, 2249–2262. [Google Scholar] [CrossRef]
- Chervin, C.N.; Clapsaddle, B.J.; Chiu, H.W.; Gash, A.E.; Satcher, J.H.; Kauzlarich, S.M. Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol− gel route. Chem. Mater. 2005, 17, 3345–3351. [Google Scholar] [CrossRef]
- Subbarao, E.C.; Maiti, H.S. Solid electrolytes with oxygen ion conduction. Solid State Ion. 1984, 11, 317–338. [Google Scholar] [CrossRef]
- Weller, M.; Herzog, R.; Kilo, M.; Borchardt, G.; Weber, S.; Scherrer, S. Oxygen mobility in yttria-doped zirconia studied by internal friction, electrical conductivity and tracer diffusion experiments. Solid State Ion. 2004, 175, 409–413. [Google Scholar] [CrossRef]
- Wu, C.J.; Hamada, M.S. Experiments: Planning, Analysis, and Optimization; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Buzzi-Ferraris, G. Planning of experiments and kinetic analysis. Catal. Today 1999, 52, 125–132. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Stevenson, D.A. Influence of Annealing on the Electrical Conductivity of Polycrystalline ZrO2 + 8 Wt% Y2O3. J. Am. Ceram. Soc. 1982, 65, 213–216. [Google Scholar] [CrossRef]
- Kondoh, J.; Kawashima, T.; Kikuchi, S.; Tomii, Y.; Ito, Y. Effect of Aging on Yttria-Stabilized Zirconia: I. A Study of Its Electrochemical Properties. J. Electrochem. Soc. 1998, 145, 1527. [Google Scholar] [CrossRef]
- Backhaus-Ricoult, M.; Badding, M.; Thibault, Y. Grain boundary segregation and conductivity in yttria-stabilized zirconia. In Advances in Electronic and Electrochemical Ceramics: Proceedings of the 107th Annual Meeting of The American Ceramic Society; Dongan, F., Kumta, P.N., Eds.; John Wiley & Sons: Baltimore, MD, USA, 2012; p. 173. [Google Scholar]
- Navrotsky, A. Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure. J. Mater. Chem. 2010, 20, 10577–10587. [Google Scholar] [CrossRef]
- International Standards Organization. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Microstructural Characterization—Part 1: Determination of Grain Size and Size Distribution, ISO 13383-1; International Standards Organization (ISO): Geneva, Switzerland, 2012. [Google Scholar]
- Kondoh, J. Origin of the hump on the left shoulder of the X-ray diffraction peaks observed in Y2O3-fully and partially stabilized ZrO2. J. Alloy. Compd. 2004, 375, 270–282. [Google Scholar] [CrossRef]
- Kondoh, J.; Kikuchi, S.; Tomii, Y.; Ito, Y. Effect of Aging on Yttria-Stabilized Zirconia: II. A Study of the Effect of the Microstructure on Conductivity. J. Electrochem. Soc. 1998, 145, 1536. [Google Scholar] [CrossRef]
- Dura, O.J.; Boada, R.; De La Torre, M.A.L.; Aquilanti, G.; Rivera-Calzada, A.; Leon, C.; Chaboy, J. XANES and EXAFS study of the local order in nanocrystalline yttria-stabilized zirconia. Phys. Rev. B 2013, 87, 174109. [Google Scholar] [CrossRef] [Green Version]
- Khare, J.; Rajput, P.; Joshi, M.; Jha, S.; Bhattacharyya, D.; Kukreja, L. X-ray absorption spectroscopy based investigation of local structure in yttria stabilized zirconia nanoparticles generated by laser evaporation method: Effect of pulsed vs. CW mode of laser operation. Ceram. Int. 2015, 41, 5909–5915. [Google Scholar] [CrossRef]
- Kondoh, J.; Kikuchi, S.; Tomii, Y.; Ito, Y. Effect of Aging on Yttria-Stabilized Zirconia: III. A Study of the Effect of Local Structures on Conductivity. J. Electrochem. Soc. 1998, 145, 1550. [Google Scholar] [CrossRef]
- Ren, X.; Pan, W. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater. 2014, 69, 397–406. [Google Scholar] [CrossRef]
- Appel, C.C.; Bonanos, N.; Horsewell, A.; Linderoth, S. Ageing behaviour of zirconia stabilised by yttria and manganese oxide. J. Mater. Sci. 2001, 36, 4493–4501. [Google Scholar] [CrossRef]
- Kondoh, J.; Kikuchi, S.; Tomii, Y.; Ito, Y. Aging and composition dependence of electron diffraction patterns in Y2O3-stabilized ZrO2: Relationship between crystal structure and conductivity. Physica B 1999, 262, 177–189. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Jo, K.; Park, M.-s.; Kim, T.; Lee, H. Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging. Materials 2022, 15, 6947. https://doi.org/10.3390/ma15196947
Lee H, Jo K, Park M-s, Kim T, Lee H. Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging. Materials. 2022; 15(19):6947. https://doi.org/10.3390/ma15196947
Chicago/Turabian StyleLee, Hwanseok, Kanghee Jo, Min-sung Park, Taewoo Kim, and Heesoo Lee. 2022. "Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging" Materials 15, no. 19: 6947. https://doi.org/10.3390/ma15196947
APA StyleLee, H., Jo, K., Park, M. -s., Kim, T., & Lee, H. (2022). Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging. Materials, 15(19), 6947. https://doi.org/10.3390/ma15196947