Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shirane, G.; Suzuki, K. Crystal structure of Pb(Zr-Ti)O3. J. Phys. Soc. Jpn. 1952, 7, 333. [Google Scholar] [CrossRef]
- Jaffe, B.; Roth, R.S.; Marzullo, S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 1954, 25, 809–810. [Google Scholar] [CrossRef]
- Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics, 1st ed.; Academic Press: London, UK, 1971; pp. 7–15. [Google Scholar] [CrossRef]
- Kimura, M.; Ando, A.; Sakabe, Y. Lead Zirconate Titanate-Based Piezo-Ceramics. In Advanced Piezoelectric Materials, 1st ed.; Uchino, K., Ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 89–110. [Google Scholar] [CrossRef]
- Noheda, B.; Cox, D.E.; Shirane, G.; Gonzalo, J.A.; Cross, L.E.; Park, S.E. A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl. Phys. Lett. 1999, 74, 2059–2061. [Google Scholar] [CrossRef]
- Guo, R.; Cross, L.E.; Park, S.-E.; Noheda, B.; Cox, D.E.; Shirane, G. Origin of the high piezoelectric response in PbZr1-xTixO3. Phys. Rev. Lett. 2000, 84, 5423–5426. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yokota, H.; Glazer, A.M.; Ren, Z.; Keen, D.A.; Keeble, D.S.; Thomas, P.A.; Ye, Z.G. The missing boundary in the phase diagram of PbZr1−xTixO3. Nat. Comm. 2014, 5, 5231–5240. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.A. Review Nonlinearity in piezoelectric ceramics. J. Mater. Sci. 2001, 36, 4575–4601. [Google Scholar] [CrossRef]
- Schönau, K.A.; Schmitt, L.A.; Knapp, M.; Fuess, H.; Eichel, R.A.; Kungl, H.; Hoffmann, M.J. Nanodomain structure of Pb[Zr1-xTix]O3 at its morphotropic phase boundary: Investigations from local to average structure. Phys. Rev. B 2007, 75, 184117. [Google Scholar] [CrossRef] [Green Version]
- Bovtun, V.; Veljko, S.; Kamba, S.; Petzelt, J.; Vakhrushev, S.; Yakymenko, Y.; Brinkman, K.; Setter, N. Broad-band dielectric response of PbMg1/3Nb2/3O3 relaxor ferroelectrics: Single crystals, ceramics, and thin films. J. Eur. Ceram. Soc. 2006, 26, 2867–2875. [Google Scholar] [CrossRef]
- Uchino, K. Relaxor Ferroelectric-Based Ceramics. In Advanced Piezoelectric Materials, 1st ed.; Uchino, K., Ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 111–129. [Google Scholar] [CrossRef]
- Takenaka, T. Lead-Free Piezo-Ceramics. In Advanced Piezoelectric Materials, 1st ed.; Uchino, K., Ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 130–170. [Google Scholar] [CrossRef]
- Wang, W.; Tang, X.G.; Jiang, Y.P.; Liu, Q.X.; Li, W.H.; Guo, X.B.; Tang, Z.H. Modified relaxor ferroelectrics in BiFeO3-(Ba,Sr)TiO3-BiScO3 ceramics for energy storage applications. Sustain. Mater. Technol. 2002, 32, e00428. [Google Scholar] [CrossRef]
- Djahmoum, M.; El Kechai, O.; Marchet, P. Elaboration and characterization of materials from the LaMnO3-BiMnO3 binary system. Phys. Status Solidi A 2020, 217, 1900814. [Google Scholar] [CrossRef]
- Selvamani, R.; Singh, G.; Sathe, V.; Tiwari, V.S.; Gupta, P.K. Dielectric, structural and Raman studies on (Na0.5Bi0.5TiO3)(1-x)(BiCrO3)x ceramic. J. Phys. Condens. Matter 2011, 23, 055901. [Google Scholar] [CrossRef]
- Azuma, M.; Niitaka, S.; Hayashi, N.; Oka, K.; Takano, M.; Funakubo, H.; Shimakawa, Y. Rhombohedral–tetragonal phase boundary with high Curie temperature in (1-x)BiCoO3–xBiFeO3 solid solution. Jpn. J. Appl. Phys. 2008, 47, 7579–7581. [Google Scholar] [CrossRef]
- Oka, K.; Koyama, T.; Ozaaki, T.; Mori, S.; Shimakawa, Y.; Azuma, M. Polarization rotation in the monoclinic perovskite BiCo1−xFexO3. Angew. Chem. 2012, 124, 8101–8104. [Google Scholar] [CrossRef]
- Pan, Z.; Chen, J.; Yu, R.; Yamamoto, H.; Rong, Y.; Hu, L.; Li, Q.; Lin, K.; You, L.; Zhao, K.; et al. Giant polarization and high temperature monoclinic phase in a lead-free perovskite of Bi(Zn0.5Ti0.5)O3-BiFeO3. Inorg. Chem. 2016, 55, 9513–9516. [Google Scholar] [CrossRef]
- Pan, Z.; Nishikubo, T.; Sakai, Y.; Yamamoto, T.; Kawaguchi, S.; Azuma, M. Observation of stabilized monoclinic phase as a “bridge” at the morphotropic phase boundary between tetragonal perovskite PbVO3 and rhombohedral BiFeO3. Chem. Mater. 2020, 32, 3615–3620. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, M.H.; Nishikubo, T.; Sakai, Y.; Yamamoto, H.; Hojo, H.; Fukuda, M.; Hu, L.; Ishizaki, H.; Kaneko, S.; et al. Polarization rotation at morphotropic phase boundary in new lead-free Na1/2Bi1/2V1–xTixO3 piezoceramics. ACS Appl. Mater. Interfaces 2021, 13, 5208–5215. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Salak, A.N.; Vyshatko, N.P.; Lopes, A.B.; Olekhnovich, N.M.; Pushkarev, A.V.; Maroz, I.I.; Radyush, Y.V. Crystal structure of metastable perovskite Bi(Mg1/2Ti1/2)O3: Bi-based structural analogue of antiferroelectric PbZrO3. Chem. Mater. 2006, 18, 5104–5110. [Google Scholar] [CrossRef]
- Suchomel, M.R.; Fogg, A.M.; Allix, M.; Niu, H.; Claridge, J.B.; Rosseinsky, M.J. Bi2ZnTiO6: A lead-free closed-shell polar perovskite with a calculated ionic polarization of 150 μC.cm−2. Chem. Mater. 2006, 18, 4987–4989. [Google Scholar] [CrossRef]
- Salak, A.N.; Shvartsman, V.V.; Cardoso, J.P.; Pushkarev, A.V.; Radyush, Y.V.; Olekhnovich, N.M.; Khalyavin, D.D.; Vieira, J.M.; Čižmár, E.; Feher, A. The orthorhombic-tetragonal morphotropic phase boundary in high-pressure synthesized BiMg0.5Ti0.5O3-BiZn0.5Ti0.5O3 perovskite solid solutions. J. Phys. Chem. Solids 2022, 161, 110392. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Salak, A.N.; Fertman, E.L.; Kotlyar, O.V.; Eardley, E.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V.; Fedorchenko, A.V.; Desnenko, V.A.; et al. The phenomenon of conversion polymorphism in Bi-containing metastable perovskites. Chem. Commun. 2019, 55, 4683–4686. [Google Scholar] [CrossRef]
- Pushkarev, A.V.; Olekhnovich, N.M.; Radyush, Y.V. High-pressure Bi(Mg1−xZnx)1/2Ti1/2O3 perovskite solid solutions. Inorg. Mater. 2011, 47, 1116–1119. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Oh, S.J.; Shin, Y.; Tran, T.T.; Lee, D.W.; Yoon, A.; Shiv, H.P.; Ok, K.M. Structure–property relationships in solid solutions of noncentrosymmetric Aurivillius phases, Bi4–xLaxTi3O12 (x = 0–0.75). Inorg. Chem. 2012, 51, 10402–10407. [Google Scholar] [CrossRef]
- Salak, A.N.; Khalyavin, D.D.; Mantas, P.Q.; Senos, A.M.R.; Ferreira, V.M. Structure-dependent microwave dielectric properties of (1−x)La(Mg1/2Ti1/2)O3–xLa2/3TiO3 ceramics. J. Appl. Phys. 2005, 98, 034101. [Google Scholar] [CrossRef] [Green Version]
- Shvartsman, V.V.; Kholkin, A.L. Nanoscale Investigation of Polycrystalline Ferroelectric Materials via Piezoresponse Force Microscopy. In Multifunctional Polycrystalline Ferroelectric Materials: Processing and Properties; Pardo, L., Ricote, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 409–468. [Google Scholar] [CrossRef]
The Composition Range | The Thermal Stability Limit, K |
---|---|
x ≤ 0.20 | 970 |
0.20 < x ≤ 0.65 | 870 |
x > 0.65 | 820 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, J.P.V.; Shvartsman, V.V.; Pushkarev, A.V.; Radyush, Y.V.; Olekhnovich, N.M.; Khalyavin, D.D.; Čižmár, E.; Feher, A.; Salak, A.N. Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System. Materials 2022, 15, 6998. https://doi.org/10.3390/ma15196998
Cardoso JPV, Shvartsman VV, Pushkarev AV, Radyush YV, Olekhnovich NM, Khalyavin DD, Čižmár E, Feher A, Salak AN. Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System. Materials. 2022; 15(19):6998. https://doi.org/10.3390/ma15196998
Chicago/Turabian StyleCardoso, João Pedro V., Vladimir V. Shvartsman, Anatoli V. Pushkarev, Yuriy V. Radyush, Nikolai M. Olekhnovich, Dmitry D. Khalyavin, Erik Čižmár, Alexander Feher, and Andrei N. Salak. 2022. "Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System" Materials 15, no. 19: 6998. https://doi.org/10.3390/ma15196998
APA StyleCardoso, J. P. V., Shvartsman, V. V., Pushkarev, A. V., Radyush, Y. V., Olekhnovich, N. M., Khalyavin, D. D., Čižmár, E., Feher, A., & Salak, A. N. (2022). Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System. Materials, 15(19), 6998. https://doi.org/10.3390/ma15196998