Effect of Ornamental Stone Waste Incorporation on the Rheology, Hydration, Microstructure, and CO2 Emissions of Ordinary Portland Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Basic Materials
2.3. X-ray Diffraction (XRD)
2.4. Mix Proportions
2.5. Sample Preparation
2.6. Testing Methods
2.6.1. Calorimetry Test
2.6.2. Slump and Rheometer Testes
2.6.3. Compression Test
2.7. CO2 Emission Analysis
3. Results
3.1. Characterization of Materials
3.2. Isothermal Calorimetry
3.3. Rheology
3.4. Compressive Strength Results
3.5. CO2 Emission Analysis
4. Discussion
5. Conclusions
- -
- The results of isothermal calorimetry showed that with the increase in OSW content, the 90-h cumulative heat increased, and the main peak heat release occurred before. This indicates that OSW slightly improved the OPC hydration.
- -
- Rheology results indicated that OSW can improve the fresh properties of cement pastes. This behavior can be attributed to the slightly higher average particle size of OSW compared to OPC particles and to the higher superplasticizer (SP) content of cement pastes with OSW incorporation.
- -
- Pastes with 10% of OPC replacement by OSW can be produced without significantly impacting the compressive strength and porosity.
- -
- The CO2 emission per m3 of pastes progressively decreases with the increase in the cement replacement content, corresponding to a reduction of up to 31%. The CO2 intensity (i.e., kg CO2-eq/m3·MPa) of the pastes with OSW at 28 days (18.8–19.5 kg CO2-eq/MPa·m3 of paste) were equivalent to plain cement paste (19.2 kg CO2-eq/MPa·m3 of paste).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arif, M.; Gupta, V.; Choudhary, H.; Kumar, S.; Basu, P. Performance evaluation of cement concrete containing sandstone slurry. Constr. Build. Mater. 2018, 184, 432–439. [Google Scholar] [CrossRef]
- Basu, P.; Gupta, R.C.; Agrawal, V. Effect of carbonation on the mechanical and durability properties of sandstone modified self-compacting concrete. Mater. Today Proc. 2020, 32, 686–691. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, R.C.; Shrivastava, S. Long term studies on the utilisation of quartz sandstone wastes in cement concrete. J. Clean. Prod. 2017, 143, 634–642. [Google Scholar] [CrossRef]
- Gupta, R.C.; Basu, P.; Agrawal, S. Mechanical properties of self-compacting concrete containing sandstone slurry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 689, 012002. [Google Scholar] [CrossRef] [Green Version]
- Basu, P.; Thomas, B.S.; Gupta, R.C.; Agrawal, V. Properties of sustainable self-compacting concrete incorporating discarded sandstone slurry. J. Clean. Prod. 2021, 281, 125313. [Google Scholar] [CrossRef]
- Ronov, A.B. Probable changes in the composition of sea water during the course of geological time. Sedimentology 1968, 10, 25–43. [Google Scholar] [CrossRef]
- The Brazilian Sector of Ornamental Stones; Brazilian Association of Dimension Stone Industry (ABIROCHAS): Rio de Janeiro, Brazil, 2018.
- Mashaly, A.O.; El-Kaliouby, B.A.; Shalaby, B.N.; El-Gohary, A.M.; Rashwan, M.A. Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. J. Clean. Prod. 2016, 112, 731–741. [Google Scholar] [CrossRef]
- Mashaly, A.O.; Shalaby, B.N.; Rashwan, M.A. Performance of mortar and concrete incorporating granite sludge as cement replacement. Constr. Build. Mater. 2018, 169, 800–818. [Google Scholar] [CrossRef]
- Vardhan, K.; Goyal, S.; Siddique, R.; Singh, M. Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr. Build. Mater. 2015, 96, 615–621. [Google Scholar] [CrossRef]
- Vijayalakshmi, M.; Sekar, A.S.S.; Ganesh Prabhu, G. Strength and durability properties of concrete made with granite industry waste. Constr. Build. Mater. 2013, 46, 1–7. [Google Scholar] [CrossRef]
- Mundra, S.; Agrawal, V.; Nagar, R. Sandstone cutting waste as partial replacement of fine aggregates in concrete: A mechanical strength perspective. J. Build. Eng. 2020, 32, 101534. [Google Scholar] [CrossRef]
- Basu, P.; Thomas, B.S.; Chandra Gupta, R.; Agrawal, V. Strength, permeation, freeze-thaw resistance, and microstructural properties of self-compacting concrete containing sandstone waste. J. Clean. Prod. 2021, 305, 127090. [Google Scholar] [CrossRef]
- Gastaldini, A.L.G.; Hengen, M.F.; Gastaldini, M.C.C.; Do Amaral, F.D.; Antolini, M.B.; Coletto, T. The use of water treatment plant sludge ash as a mineral addition. Constr. Build. Mater. 2015, 94, 513–520. [Google Scholar] [CrossRef]
- Ali, M.B.; Saidur, R.; Hossain, M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Reis, D.C.; Quattrone, M.; Souza, J.F.T.; Punhagui, K.R.G.; Pacca, S.A.; John, V.M. Potential CO2 reduction and uptake due to industrialization and efficient cement use in Brazil by 2050. J. Ind. Ecol. 2021, 25, 344–358. [Google Scholar] [CrossRef]
- Standards NBR 16697; Portland Cement–Requirements. Brazilian Association of Technical: Rio de Janeiro, Brazil, 2018.
- ASTM C150/C150M; Standard Specification for Portland Cement. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- de Matos, P.R.; Sakata, R.D.; Prudêncio, L.R. Eco-efficient low binder high-performance self-compacting concretes. Constr. Build. Mater. 2019, 225, 941–955. [Google Scholar] [CrossRef]
- Hagemann, S.E.; Gastaldini, A.L.G.; Cocco, M.; Jahn, S.L.; Terra, L.M. Synergic effects of the substitution of Portland cement for water treatment plant sludge ash and ground limestone: Technical and economic evaluation. J. Clean. Prod. 2019, 214, 916–926. [Google Scholar] [CrossRef]
- Ruviaro, A.S.; Silvestro, L.; Scolaro, T.P.; de Matos, P.R.; Pelisser, F. Use of calcined water treatment plant sludge for sustainable cementitious composites production. J. Clean. Prod. 2021; in press. [Google Scholar] [CrossRef]
- Kantro, D. Influence of Water-Reducing Admixtures on Properties of Cement Paste—A Miniature Slump Test. Cem. Concr. Aggreg. 1980, 2, 95. [Google Scholar] [CrossRef]
- de Matos, P.R.; Sakata, R.D.; Onghero, L.; Uliano, V.G.; de Brito, J.; Campos, C.E.M.; Gleize, P.J.P. Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation. J. Build. Eng. 2021, 38, 102187. [Google Scholar] [CrossRef]
- De Larrard, F.; Ferraris, C.F.; Sedran, T. Fresh concrete: A Herschel-Bulkley material. Mater. Struct. 1996, 31, 494–498. [Google Scholar] [CrossRef]
- ASTM C1231/C1231M; Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Cylindrical Concrete Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2015.
- ASTM C642; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- Damineli, B.L.; Kemeid, F.M.; Aguiar, P.S.; John, V.M. Measuring the eco-efficiency of cement use. Cem. Concr. Compos. 2010, 32, 555–562. [Google Scholar] [CrossRef]
- Gursel, A.P.; Maryman, H.; Ostertag, C. A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. J. Clean. Prod. 2016, 112, 823–836. [Google Scholar] [CrossRef]
- Votorantim Cimentos. EPD–Environmental Product Declaration: CP II E 40, CP III-40 RS and CP V-ARI; Votorantim Cimentos: São Paulo, Brazil, 2016. [Google Scholar]
- 911 Metallurgy Corp. Table of Ball Mill Bond Work Index of Minerals; IOPS Publisher: New York, NY, USA, 2015. [Google Scholar]
- Schlomer, S.; Bruckner, T.; Fulton, L.; Hertwich, E.; Mckinnon, A.; Perczyk, D.; Roy, J.; Schaffer, R.; Sims, R.; Smith, P.; et al. Technology-Specific Cost and Performance Parameters; IOPS Publisher: New York, NY, USA, 2014. [Google Scholar]
- de Matos, P.R.; Foiato, M.; Prudêncio, L.R. Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete. Constr. Build. Mater. 2019, 203, 282–293. [Google Scholar] [CrossRef]
- Maddalena, R.; Roberts, J.J.; Hamilton, A. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. 2018, 186, 933–942. [Google Scholar] [CrossRef]
- Reffold, E.; Leighton, F.; Choundhury, F.; Rayner, P.S. Greenhouse Gas Emissions of Water Supply and Demand Management Options; Environment Agency: Bristol, UK, 2008. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J. Concrete: Microstructures, Properties, and Materials; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Flower, D.J.M.; Sanjayan, J.G. Greenhouse Gas Emissions Due to Concrete Manufacture. In Handbook of Low Carbon Concrete; Butterworth-Heinemann: Oxford, UK, 2017; Chapter 12; pp. 1–16. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in understanding hydration of Portland cement. Cem. Concr. Res. 2015, 78, 38–56. [Google Scholar] [CrossRef]
- Adu-Amankwah, S.; Zajac, M.; Stabler, C.; Lothenbach, B.; Black, L. Influence of limestone on the hydration of ternary slag cements. Cem. Concr. Res. 2017, 100, 96–109. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Roussel, N. Understanding the Rheology of Concrete; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780857090287. [Google Scholar]
- de Matos, P.R.; Pilar, R.; Casagrande, C.A.; Gleize, P.J.P.; Pelisser, F. Comparison between methods for determining the yield stress of cement pastes. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 24. [Google Scholar] [CrossRef]
- Yahia, A. Effect of solid concentration and shear rate on shear-thickening response of high-performance cement suspensions. Constr. Build. Mater. 2014, 53, 517–521. [Google Scholar] [CrossRef]
- Jiao, D.; Shi, C.; Yuan, Q. Influences of shear-mixing rate and fly ash on rheological behavior of cement pastes under continuous mixing. Constr. Build. Mater. 2018, 188, 170–177. [Google Scholar] [CrossRef]
- Maybury, J.; Ho, J.C.M. Shear thickening of cement powder paste–why and how to mitigate? HKIE Trans. 2017, 24, 193–203. [Google Scholar] [CrossRef]
- Jiang, S.; Shan, B.; Ouyang, J.; Zhang, W.; Yu, X.; Li, P.; Han, B. Rheological properties of cementitious composites with nano/fiber fillers. Constr. Build. Mater. 2018, 158, 786–800. [Google Scholar] [CrossRef]
- Azevedo, A.; De Matos, P.; Marvila, M.; Sakata, R.; Silvestro, L.; Gleize, P.; Brito, J. De Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground Açaí Fibers. Appl. Sci. 2021, 11, 3036. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Moriconi, G.; Naik, T.R. Characterization of marble powder for its use in mortar and concrete. Constr. Build. Mater. 2010, 24, 113–117. [Google Scholar] [CrossRef]
- Roussel, N.; Ovarlez, G.; Garrault, S.; Brumaud, C. The origins of thixotropy of fresh cement pastes. Cem. Concr. Res. 2012, 42, 148–157. [Google Scholar] [CrossRef]
- Baroghel-Bouny, V.; Kinomura, K.; Thiery, M.; Moscardelli, S. Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cem. Concr. Compos. 2011, 33, 832–847. [Google Scholar] [CrossRef]
- Galetakis, M.; Soultana, A. A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector. Constr. Build. Mater. 2016, 102, 769–781. [Google Scholar] [CrossRef]
- Rashwan, M.A.; Al-Basiony, T.M.; Mashaly, A.O.; Khalil, M.M. Behaviour of fresh and hardened concrete incorporating marble and granite sludge as cement replacement. J. Build. Eng. 2020, 32, 101697. [Google Scholar] [CrossRef]
- Almada, B.S.; de Souza Melo, L.; Dutra, J.B.; Bubani, L.C.; Silva, G.J.B.; dos Santos, W.J.; Aguilar, M.T.P. Influence of the heterogeneity of waste from wet processing of ornamental stones on the performance of Portland cement composites. Constr. Build. Mater. 2020, 262, 120036. [Google Scholar] [CrossRef]
- Sardinha, M.; de Brito, J.; Rodrigues, R. Durability properties of structural concrete containing very fine aggregates of marble sludge. Constr. Build. Mater. 2016, 119, 45–52. [Google Scholar] [CrossRef]
- Alsubari, B.; Shafigh, P.; Jumaat, M.Z. Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. J. Clean. Prod. 2016, 137, 982–996. [Google Scholar] [CrossRef]
Mix | Kg/m3 | |||
---|---|---|---|---|
OPC | OSW | Water | SP | |
REF | 1215.69 | 0.00 | 607.84 | 0.30 |
OSW10 | 1094.12 | 121.57 | 607.84 | 0.61 |
OSW20 | 972.55 | 243.14 | 607.84 | 0.94 |
OSW30 | 850.98 | 364.71 | 607.84 | 1.22 |
Properties | OPC | OSW |
---|---|---|
Chemical composition (%) | - | - |
Al2O3 | 4.40 | - |
SiO2 | 18.62 | 95.80 |
Fe2O3 | 3.00 | 0.49 |
CaO | 61.24 | 0.17 |
MgO | 3.80 | - |
SO3 | 3.08 | - |
K2O | - | 1.06 |
BaO | - | 0.15 |
Loss on ignition | 3.41 | 1.09 |
Insoluble residue | 0.94 | - |
Physical properties | - | - |
Specific Gravity (g/cm3) | 3.10 | 2.60 |
Fineness (m2/g)—BET | 2.22 | - |
d50 (µm) | 11.91 | 21.11 |
Degrees of Freedom (DF) | Sum of Squares (SS) | Mean Square (MS) | F Value | p Value | Sig a | |
---|---|---|---|---|---|---|
OSW content | 3 | 4630.8230 | 2315.4115 | 770.4844 | 0 | S |
Age | 2 | 873.6204 | 291.2068 | 96.9030 | 3.3984 × 1013 | S |
Error | 23 | 69.1182 | 3.0051 | |||
Total | 28 | 5566.5267 |
Mixtures | Cement (kg/m3 of Paste) | OSW (kg/m3 of Paste) | CO2-eq/m3 of Paste | CO2-eq/m3 of Concrete * |
---|---|---|---|---|
REF | 1215.7 | 0.0 | 1084.4 | 325.3 |
OSW10 | 1085.9 | 120.7 | 969.0 | 290.7 |
OSW20 | 958.1 | 239.5 | 855.4 | 256.6 |
OSW30 | 832.2 | 356.6 | 743.4 | 223.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scolaro, T.P.; Silvestro, L.; Ruviaro, A.S.; de Azevedo, A.R.G.; Monteiro, S.N.; Pelisser, F. Effect of Ornamental Stone Waste Incorporation on the Rheology, Hydration, Microstructure, and CO2 Emissions of Ordinary Portland Cement. Materials 2022, 15, 401. https://doi.org/10.3390/ma15020401
Scolaro TP, Silvestro L, Ruviaro AS, de Azevedo ARG, Monteiro SN, Pelisser F. Effect of Ornamental Stone Waste Incorporation on the Rheology, Hydration, Microstructure, and CO2 Emissions of Ordinary Portland Cement. Materials. 2022; 15(2):401. https://doi.org/10.3390/ma15020401
Chicago/Turabian StyleScolaro, Taylana Piccinini, Laura Silvestro, Artur Spat Ruviaro, Afonso R. G. de Azevedo, Sergio Neves Monteiro, and Fernando Pelisser. 2022. "Effect of Ornamental Stone Waste Incorporation on the Rheology, Hydration, Microstructure, and CO2 Emissions of Ordinary Portland Cement" Materials 15, no. 2: 401. https://doi.org/10.3390/ma15020401
APA StyleScolaro, T. P., Silvestro, L., Ruviaro, A. S., de Azevedo, A. R. G., Monteiro, S. N., & Pelisser, F. (2022). Effect of Ornamental Stone Waste Incorporation on the Rheology, Hydration, Microstructure, and CO2 Emissions of Ordinary Portland Cement. Materials, 15(2), 401. https://doi.org/10.3390/ma15020401