Microstructure, Mechanical Properties and Corrosion Behaviors of Al–Li–Cu–Mg–Ag–Zn Alloys
Abstract
:1. Introduction
2. Experimental Details
2.1. Specimen Preparation and Heat Treatment
2.2. Hardness and Tensile Testing
2.3. Corrosion and Electrochemical Testing
2.4. Microstructural Analysis
3. Results
3.1. Aging Hardening Behaviors
3.2. Tensile Properties
3.3. Corrosion Behaviors
3.4. Microstructure
4. Discussion
4.1. Effect of Zn Contents on Aging Precipitation
4.2. Effect of Zn Contents on the Mechanical Properties
4.3. Effect of Zn Contents on Corrosion Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Lavernia, E.J.; Srivatsan, T.S.; Mohamed, F.A. Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys. J. Mater. Sci. 1990, 25, 1137–1158. [Google Scholar] [CrossRef]
- Rioja, R.J.; Liu, J. The Evolution of Al-Li Base Products for Aerospace and Space Applications. Metall. Mater. Trans. A 2012, 43, 3325–3337. [Google Scholar] [CrossRef]
- Kumar, K.S.; Heubaum, F.H. The effect of Li content on the natural aging response of Al-Cu-Li-Mg-Ag-Zr alloys. Acta Mater. 1997, 45, 2317–2327. [Google Scholar] [CrossRef]
- Huang, J.L.; Li, J.F.; Liu, D.Y.; Zhang, R.F.; Chen, Y.L.; Zhang, X.H.; Ma, P.C.; Gupta, R.K.; Birbilis, N. Correlation of intergranular corrosion behaviour with microstructure in Al-Cu-Li alloy. Corros. Sci. 2018, 139, 215–226. [Google Scholar] [CrossRef]
- El-Aty, A.A.; Xu, Y.; Guo, X.Z.; Zhang, S.H.; Ma, Y.; Chen, D.Y. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review. J. Adv. Res. 2018, 10, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Liu, P.L.; Chen, Y.L.; Zhang, X.H.; Zheng, Z.Q. Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al-(3.2-3.8) Cu-(1.0-1.4) Li alloys. Trans. Nonferrous Met. Soc. China 2015, 25, 2103–2112. [Google Scholar] [CrossRef]
- Decreus, B.; Deschamps, A.; De Geuser, F.; Donnadieu, P.; Sigli, C.; Weyland, M. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys. Acta Mater. 2013, 61, 2207–2218. [Google Scholar] [CrossRef]
- Li, J.F.; Birbilis, N.; Liu, D.Y.; Chen, Y.L.; Zhang, X.H.; Caid, C. Intergranular corrosion of Zn-free and Zn-microalloyed Al-xCu-yLi alloys. Corros. Sci. 2016, 105, 44–57. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Y.C.; Li, X.F.; Ma, N.H.; Wang, H.W. Rapid hardening during natural aging of Al-Cu-Li based alloys with Mg addition. Mater. Sci. Eng. A 2019, 743, 741–744. [Google Scholar] [CrossRef]
- Bai, S.; Zhou, X.W.; Liu, Z.Y.; Ying, P.Y.; Liu, M.; Zeng, S.M. Atom probe tomography study of Mg-dependent precipitation of Ω phase in initial aged Al-Cu-Mg-Ag alloys. Mater. Sci. Eng. A 2015, 637, 183–188. [Google Scholar] [CrossRef]
- Huang, B.P.; Zheng, Z.Q. Effects of Li content on precipitation in Al-Cu-(Li)-Mg-Ag-Zr Alloys. Scr. Mater. 1998, 38, 357–362. [Google Scholar] [CrossRef]
- Gumbmann, E.; De Geuser, F.; Sigli, C.; Deschampsa, A. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy. Acta Mater. 2017, 133, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Gumbmann, E.; Lefebvre, W.; De Geuser, F.; Sigli, C.; Deschampsa, A. The effect of minor solute additions on the precipitation path of an Al-Cu-Li alloy. Acta Mater. 2016, 115, 104–114. [Google Scholar] [CrossRef]
- Kertz, J.E.; Gouma, P.I.; Buchheit, R.G. Localized corrosion susceptibility of Al-Li-Cu-Mg-Zn alloy AF/C458 due to interrupted quenching from solutionizing temperature. Metall. Mater. Trans. A 2001, 32, 2561–2573. [Google Scholar] [CrossRef]
- Liu, D.Y.; Li, J.F.; Ma, Y.L.; Gupta, R.K.; Birbilis, N.; Zhang, R. A closer look at the role of Zn in the microstructure and corrosion of an Al-Cu-Li alloy. Corros. Sci. 2018, 145, 220–231. [Google Scholar] [CrossRef]
- Li, J.F.; Xu, L.; Cai, C.; Chen, Y.L.; Zhang, X.H.; Zheng, Z.Q. Mechanical Property and Intergranular Corrosion Sensitivity of Zn-Free and Zn-Microalloyed Al-2.7Cu-1.7Li-0.3Mg Alloys. Metall. Mater. Trans. A 2014, 45, 5736–5748. [Google Scholar] [CrossRef]
- Zhang, J.S.; Wu, G.H.; Zhang, L.; Zhang, X.L.; Shi, C.C.; Sun, J.W. Effect of Zn on precipitation evolution and mechanical properties of a high strength cast Al-Li-Cu alloy]. Mater. Charact. 2020, 160, 110089. [Google Scholar] [CrossRef]
- Sun, J.W.; Zhang, L.; Wu, G.H.; Zhang, X.L.; Rong, M.; Wang, C.L. Microstructural characteristics and mechanical properties of extruded Al-4Cu-1Li-0.4Mg-0.1Zr-xZn alloy. Mater. Sci. Eng. A 2019, 743, 223–232. [Google Scholar] [CrossRef]
- Deng, Y.J.; Bai, J.H.; Wu, X.D.; Huang, G.J.; Cao, L.F.; Huang, L. Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy. J. Alloy. Compd. 2017, 723, 661–666. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, J.Z.; Chen, J.H.; Duan, S.Y.; Liu, Z.R.; Ming, W.Q.; Wu, C.L. Formation mechanism of precipitate T1 in AlCuLi alloys. J. Alloy. Compd. 2015, 624, 22–26. [Google Scholar] [CrossRef]
- Donnadieu, P.; Shao, Y.; De Geuser, F.; Botton, G.A.; Lazar, S.; Cheynet, M.; de Boissieu, M.; Deschamps, A. Atomic structure of T1 precipitates in Al-Li-Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering. Acta Mater. 2011, 59, 462–472. [Google Scholar] [CrossRef]
- Niessen, A.K.; de Boer, F.R.; Boom, R.; de Chatel, P.F.; Mattens, W.C.M.; Miedema, A.R. Model predictions for the enthalpy of formation of transition metal alloys II. Calphad 1983, 7, 51–70. [Google Scholar] [CrossRef]
- Hirosawa, S.; Sato, T.; Kamio, A.; Flower, H.M. Classification of the role of microalloying elements in phase decomposition of Al based alloys. Acta Mater. 2000, 48, 1797–1806. [Google Scholar] [CrossRef]
- Huang, B.P.; Zheng, Z.Q. Independent and combined roles of trace Mg and Ag additions in properties precipitation process and precipitation kinetics of Al-Cu-Li-(Mg)-(Ag)-Zr-Ti alloys. Acta Mater. 1998, 46, 4381–4393. [Google Scholar] [CrossRef]
- Cassada, W.A.; Shiflet, G.J.; Starke, E.A. Mechanism of Al2CuLi (T1) nucleation and growth. Metall. Mater. Trans. A 1991, 22, 287–297. [Google Scholar] [CrossRef]
- Shin, H.J.; Jeong, H.T.; Lee, D.N. Deformation and annealing textures of silver wire. Mater. Sci. Eng. A 2000, 279, 244–253. [Google Scholar] [CrossRef]
- Suwas, S.; Gurao, N.P. Crystallographic Texture of Materials; Springer: London, UK, 2014. [Google Scholar] [CrossRef]
- Sun, J.W.; Wu, G.H.; Zhang, L.; Zhang, X.L.; Liu, L.L.; Zhang, J.S. Microstructure characteristics of an ultra-high strength extruded Al-4.7Cu-1Li-0.5Mg-0.1Zr-1Zn alloy during heat treatment. J. Alloy. Compd. 2020, 813, 152216. [Google Scholar] [CrossRef]
- Chen, X.X.; Zhao, G.Q.; Liu, G.L.; Sun, L.; Chen, L.; Zhang, C.S. Microstructure evolution and mechanical properties of 2196 Al-Li alloy in hot extrusion process. J. Mater. Process. Technol. 2020, 275, 116348. [Google Scholar] [CrossRef]
- Dorin, T.; De Geuser, F.; Lefebvre, W.; Sigli, C.; Deschamps, A. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al-Cu-Li alloy. Mater. Sci. Eng. A 2014, 605, 119–126. [Google Scholar] [CrossRef]
- Dorin, T.; Deschamps, A.; De Geuser, F.; Sigli, C. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy. Acta Mater. 2014, 75, 134–146. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, C.G.; Wei, C.Y.; Zheng, Z.Q. Effect of aging treatment on microstructures, tensile properties and intergranular corrosion behavior of Al-Cu-Li alloy. Mater. Charact. 2018, 141, 163–168. [Google Scholar] [CrossRef]
- Proton, V.; Alexis, J.; Andrieu, E.; Delfosse, J.; Deschamps, A.; De Geuser, F.; Lafont, M.C.; Blanca, C. The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium-copper-lithium alloy. Corros. Sci. 2014, 80, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Zhou, X.; Thompson, G.E.; Hughes, A.E. Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy. Corros. Sci. 2012, 61, 35–44. [Google Scholar] [CrossRef]
- Li, J.F.; Li, C.X.; Peng, Z.W.; Chen, W.J.; Zheng, Z.Q. Corrosion mechanism associated with T1 and T2 precipitates of Al-Cu-Li alloys in NaCl solution. J. Alloy. Compd. 2008, 460, 688–693. [Google Scholar] [CrossRef]
Samples | Element/wt.% | Density /g·cm−3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Cu | Li | Mg | Ag | Mn | Zr | Zn | Al | ||
Alloy 1 | 3.90 | 1.10 | 0.60 | 0.30 | 0.20 | 0.15 | -- | Bal. | 2.67 |
Alloy 2 | 3.97 | 1.17 | 0.51 | 0.27 | 0.21 | 0.11 | 0.29 | Bal. | 2.67 |
Alloy 3 | 3.99 | 1.07 | 0.60 | 0.34 | 0.31 | 0.13 | 0.57 | Bal. | 2.69 |
Aging Condition | Alloy 1 | Alloy 2 | Alloy 3 | |||
---|---|---|---|---|---|---|
Ecorr (VSCE) | Icorr (A/cm2) | Ecorr (VSCE) | Icorr (A/cm2) | Ecorr (VSCE) | Icorr (A/cm2) | |
T6 | −0.665 | 3.92 × 10−6 | −0.685 | 2.03 × 10−6 | −0.697 | 1.78 × 10−6 |
T8 | −0.708 | 1.10 × 10−5 | −0.711 | 3.17 × 10−6 | −0.727 | 1.81 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Xiao, D.; Wang, X.; Huang, L.; Liu, W. Microstructure, Mechanical Properties and Corrosion Behaviors of Al–Li–Cu–Mg–Ag–Zn Alloys. Materials 2022, 15, 443. https://doi.org/10.3390/ma15020443
Wu M, Xiao D, Wang X, Huang L, Liu W. Microstructure, Mechanical Properties and Corrosion Behaviors of Al–Li–Cu–Mg–Ag–Zn Alloys. Materials. 2022; 15(2):443. https://doi.org/10.3390/ma15020443
Chicago/Turabian StyleWu, Mingdong, Daihong Xiao, Xinkai Wang, Lanping Huang, and Wensheng Liu. 2022. "Microstructure, Mechanical Properties and Corrosion Behaviors of Al–Li–Cu–Mg–Ag–Zn Alloys" Materials 15, no. 2: 443. https://doi.org/10.3390/ma15020443
APA StyleWu, M., Xiao, D., Wang, X., Huang, L., & Liu, W. (2022). Microstructure, Mechanical Properties and Corrosion Behaviors of Al–Li–Cu–Mg–Ag–Zn Alloys. Materials, 15(2), 443. https://doi.org/10.3390/ma15020443