Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications
Abstract
:1. Introduction
2. Synthesis and Characterization Methods
2.1. Green Methods for Synthesizing ZIFs
2.1.1. Solvent Evaporation Synthesis Method
2.1.2. Ionothermal Synthesis Method
2.1.3. Hydrothermal Synthesis Method
2.1.4. Rapid Synthesis of Hierarchical Porous ZIFs
2.1.5. Supercritical CO2 Synthesis Method
2.1.6. Electrospraying Synthesis Technique
2.1.7. Rapid and Simplified Method
2.2. Characterization
2.2.1. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.2. Powder X-ray Diffraction (PXRD)
2.2.3. Field Emission Scanning Electron Microscopy (FESEM)
2.2.4. Transmission Electron Microscopy (TEM)
2.2.5. Thermogravimetric Analysis (TGA)
2.2.6. N2 Adsorption–Desorption Isotherms
3. Applications
3.1. Gas Separation
3.2. Electrosynthesis
3.3. Electrochemical Performance
3.4. Gas Sensor
3.5. Anti-Bacterial and Anti-Microbial
3.6. Protection of Proteins
3.7. Drug Release and Delivery
3.8. Adsorption in Aqueous Solution
3.9. Catalyst
3.10. Photocatalyst
3.11. Removal Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheetham, A.K.; Férey, G.; Loiseau, T. Open-framework inorganic materials. Angew. Chem. 1999, 38, 3268–3292. [Google Scholar] [CrossRef]
- Bukowski, B.C.; Keil, F.J.; Ravikovitch, P.I.; Sastre, G.; Snurr, R.Q.; Coppens, M.-O. Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids. Adsorption 2021, 27, 683–760. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Q.; Mayoral, A. Ten years of aberration corrected electron microscopy for ordered nanoporous materials. ChemCatChem 2020, 12, 1248–1269. [Google Scholar] [CrossRef]
- Lewis, D.W.; Ruiz-Salvador, A.R.; Gómez, A.; Rodriguez-Albelo, L.M.; Coudert, F.-X.; Slater, B.; Cheetham, A.K.; Mellot-Draznieks, C. Zeolitic imidazole frameworks: Structural and energetics trends compared with their zeolite analogues. CrystEngComm 2009, 11, 2272–2276. [Google Scholar] [CrossRef] [Green Version]
- Hagrman, P.J.; Hagrman, D.; Zubieta, J. Organic–Inorganic Hybrid Materials: From “Simple” Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. Angew. Chem. Int. Ed. 1999, 38, 2638–2684. [Google Scholar] [CrossRef]
- Batten, S.R.; Robson, R. Interpenetrating nets: Ordered, periodic entanglement. Angew. Chem. Int. Ed. 1998, 37, 1460–1494. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Cai, C.X.; Ren, X.M.; Duan, C.Y.; Xu, Y.; Gao, S.; You, X.Z. The Silica-Like Extended Polymorphism of Cobalt (II) Imidazolate Three-Dimensional Frameworks: X-ray Single-Crystal Structures and Magnetic Properties. Chem. Eur. J. 2003, 9, 5673–5685. [Google Scholar] [CrossRef]
- Sunshine, S.A.; Keszler, D.A.; Ibers, J.A. Coordination chemistry and the solid state. Acc. Chem. Res. 1987, 20, 395–400. [Google Scholar] [CrossRef]
- Li, K.; Olson, D.H.; Seidel, J.; Emge, T.J.; Gong, H.; Zeng, H.; Li, J. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc. 2009, 131, 10368–10369. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. J. Mater. Chem. A 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Qiu, L.G.; Xu, T.; Li, Z.Q.; Wang, W.; Wu, Y.; Jiang, X.; Zhang, L.D. Hierarchically micro-and mesoporous metal–organic frameworks with tunable porosity. Angew. Chem. Int. Ed. 2008, 47, 9487–9491. [Google Scholar] [CrossRef]
- Simon, M.-O.; Li, C.-J. Green Chem. oriented organic synthesis in water. Chem. Soc. Rev. 2012, 41, 1415–1427. [Google Scholar] [CrossRef]
- Ajoyan, Z.; Marino, P.; Howarth, A.J. Green applications of metal–organic frameworks. CrystEngComm 2018, 20, 5899–5912. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Xu, G.; Ren, J.; Wang, H.; Li, J. Sustainability assessment of straw direct combustion power generation in China: From the environmental and economic perspectives of straw substitute to coal. J. Clean. Prod. 2020, 273, 122890. [Google Scholar] [CrossRef]
- Bao, S.; Li, J.; Guan, B.; Jia, M.; Terasaki, O.; Yu, J. A green selective water-etching approach to MOF@ mesoporous SiO2 yolk-shell nanoreactors with enhanced catalytic stabilities. Matter 2020, 3, 498–508. [Google Scholar] [CrossRef]
- Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2009, 131, 16000–16001. [Google Scholar] [CrossRef] [PubMed]
- Seoane, B.; Zamaro, J.M.; Tellez, C.; Coronas, J. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). CrystEngComm 2012, 14, 3103–3107. [Google Scholar] [CrossRef]
- Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S.L. Synthesis by extrusion: Continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 2015, 6, 1645–1649. [Google Scholar] [CrossRef] [Green Version]
- Marquez, A.G.; Horcajada, P.; Grosso, D.; Ferey, G.; Serre, C.; Sanchez, C.; Boissiere, C. Green scalable aerosol synthesis of porous metal–organic frameworks. Chem. Commun. 2013, 49, 3848–3850. [Google Scholar] [CrossRef]
- Reinsch, H.; Waitschat, S.; Chavan, S.M.; Lillerud, K.P.; Stock, N. A facile “green” route for scalable batch production and continuous synthesis of zirconium MOFs. Eur. J. Inorg. Chem. 2016, 2016, 4490–4498. [Google Scholar] [CrossRef]
- Benítez, A.; Amaro-Gahete, J.; Esquivel, D.; Romero-Salguero, F.J.; Morales, J.; Caballero, Á. MIL-88A metal-organic framework as a stable sulfur-host cathode for long-cycle Li-S batteries. J. Nanomater. 2020, 10, 424. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, S.; Pei, X.; Zhou, J.; Feng, X.; Zhang, S.; Cheng, Y.; Li, H.; Han, R.; Wang, B. A Solvent-Free Hot-Pressing Method for Preparing Metal–Organic-Framework Coatings. Angew. Chem. 2016, 55, 3419–3423. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.; Saito, T.; Shimada, M. Evaluation of the parameters utilized for the aerosol-assisted synthesis of HKUST-1. Microporous Mesoporous Mater. 2017, 245, 126–132. [Google Scholar] [CrossRef]
- Zhuang, J.L.; Ceglarek, D.; Pethuraj, S.; Terfort, A. Rapid room-temperature synthesis of metal–organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 2011, 21, 1442–1447. [Google Scholar] [CrossRef]
- Duan, C.; Yu, Y.; Xiao, J.; Zhang, X.; Li, L.; Yang, P.; Wu, J.; Xi, H. Water-based routes for synthesis of metal-organic frameworks: A review. Sci. China Mater. 2020, 63, 667–685. [Google Scholar] [CrossRef] [Green Version]
- Reinsch, H. “Green” Synthesis of Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2016, 2016, 4290–4299. [Google Scholar] [CrossRef]
- Ren, J.; Dyosiba, X.; Musyoka, N.M.; Langmi, H.W.; Mathe, M.; Liao, S. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187–219. [Google Scholar] [CrossRef]
- Julien, P.A.; Mottillo, C.; Friščić, T. Metal–organic frameworks meet scalable and sustainable synthesis. Green Chem. 2017, 19, 2729–2747. [Google Scholar] [CrossRef]
- Wang, S.; Serre, C. Toward green production of water-stable metal–organic frameworks based on high-valence metals with low toxicities. ACS Sustain. Chem. Eng. 2019, 7, 11911–11927. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Taima-Mancera, I.; Pasán, J.; Pino, V. Metal-organic frameworks in green analytical chemistry. Separations 2019, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.U.; Othman MH, D.; Jilani, A.; Ismail, A.; Hashim, H.; Jaafar, J.; Rahman, M.A.; Rehman, G.U. Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption. Arab. J. Chem. 2018, 11, 1072–1083. [Google Scholar] [CrossRef]
- Wang, L.; Wen, B.; Bai, X.; Liu, C.; Yang, H. Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber. J. Colloid Interface Sci. 2019, 540, 30–38. [Google Scholar] [CrossRef]
- Xu, F.; Kou, L.; Jia, J.; Hou, X.; Long, Z.; Wang, S. Metal–organic frameworks of zeolitic imidazolate framework-7 and zeolitic imidazolate framework-60 for fast mercury and methylmercury speciation analysis. Anal. Chim. Acta 2013, 804, 240–245. [Google Scholar] [CrossRef]
- Brekalo, I.; Yuan, W.; Mottillo, C.; Lu, Y.; Zhang, Y.; Casaban, J.; Holman, K.T.; James, S.L.; Duarte, F.; Williams, P.A. Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks. Chem. Sci. 2020, 11, 2141–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamata, K.; Iyoda, T. Nanocylinder array structures in block copolymer thin films. J. Nanomater. 2006, 171–223. [Google Scholar] [CrossRef]
- Xu, W.; Dong, J.; Li, J.; Li, J.; Wu, F. A novel method for the preparation of zeolite ZSM-5. Chem. Commun. 1990, 10, 755–756. [Google Scholar] [CrossRef]
- Cai, R.; Liu, Y.; Gu, S.; Yan, Y. Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating. J. Am. Chem. Soc. 2010, 132, 12776–12777. [Google Scholar] [CrossRef]
- Galli, S.; Masciocchi, N.; Colombo, V.; Maspero, A.; Palmisano, G.; López-Garzón, F.; Domingo-García, M.; Fernández-Morales, I.; Barea, E.; Navarro, J. Adsorption of harmful organic vapors by flexible hydrophobic bis-pyrazolate based MOFs. J. Mater. Chem. 2010, 22, 1664–1672. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Yao, J.; Liu, Q.; Wang, K.; Chen, F.; Wang, H. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater. 2014, 184, 55–60. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Wang, X.; Yang, J.; Li, J. Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8. Chem. Eng. Technol. 2017, 313, 179–186. [Google Scholar] [CrossRef]
- Cooper, E.R.; Andrews, C.D.; Wheatley, P.S.; Webb, P.B.; Wormald, P.; Morris, R.E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, 1012–1016. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef] [Green Version]
- Rogers, R.D.; Seddon, K.R. Ionic liquids—Solvents of the future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Wang, X.; Li, S.; Li, Q.; Tian, R.; Li, M.; Cheng, J. Microwave-Assisted Chemical Functionalization of Single-Walled Carbon Nanotubes with Organic Peroxides. Chin. J. Chem. 2009, 27, 359–364. [Google Scholar] [CrossRef]
- Liu, P.-I.; Chung, L.-C.; Shao, H.; Liang, T.-M.; Horng, R.-Y.; Ma, C.-C.M.; Chang, M.-C. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization. Electrochim. Acta 2013, 96, 173–179. [Google Scholar] [CrossRef]
- Yang, L.; Lu, H. Microwave-assisted ionothermal synthesis and characterization of zeolitic imidazolate framework-8. Chin. J. Chem. 2012, 30, 1040–1044. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.-H. Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 2020, 420, 213407. [Google Scholar] [CrossRef]
- Misran, H.; Mahadi, N.; Othman, S.Z.; Lockman, Z.; Amin, N.; Matsumoto, A. Room temperature synthesis and characterizations of ZIF-8 formation at water-fatty alcohols interface. J. Phys. Conf. Ser. 2018, 1082, 012046. [Google Scholar] [CrossRef]
- Wu, G.; Song, P.; Zhang, D.; Liu, Z.; Li, L.; Huang, H.; Zhao, H.; Wang, N.; Zhu, Y. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int. J. Biol. Macromol. 2017, 104, 533–538. [Google Scholar] [CrossRef]
- Li, J.; Yuan, X.; Wu, Y.-n.; Ma, X.; Li, F.; Zhang, B.; Wang, Y.; Lei, Z.; Zhang, Z. From powder to cloth: Facile fabrication of dense MOF-76 (Tb) coating onto natural silk fiber for feasible detection of copper ions. Chem. Eng. Technol. 2018, 350, 637–644. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Akhbari, K.; Morsali, A. Dense coating of surface mounted CuBTC metal–organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem. 2012, 19, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Khanjani, S.; Morsali, A. Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red”. Ultrason Sonochem. 2014, 21, 1424–1429. [Google Scholar] [CrossRef]
- Song, P.; Tu, Y.; Shen, X.; Yuan, A.; Zhai, L.; Shah, S.A. Fabrication of ZIF-8@ SF Linear Composite Through Directly Feeding Approach. J. Inorg. Organomet. Polym. Mater. 2019, 29, 2083–2089. [Google Scholar] [CrossRef]
- Fan, W.; Morozumi, K.; Kimura, R.; Yokoi, T.; Okubo, T. Synthesis of nanometer-sized sodalite without adding organic additives. Langmuir 2008, 24, 6952–6958. [Google Scholar] [CrossRef] [PubMed]
- Schejn, A.; Balan, L.; Falk, V.; Aranda, L.; Medjahdi, G.; Schneider, R. Controlling ZIF-8 nano-and microcrystal formation and reactivity through zinc salt variations. CrystEngComm 2014, 16, 4493–4500. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, R.Y.; Yang, X.B.; Li, J.T.; Luo, X.T. Synthesis and Characterization of Zeolitic Imidazolate Framework-8@ Sodalite Composite. Particles. Mater. Sci. Forum. Trans. Tech. Publ. 2016, 852, 1250–1255. [Google Scholar] [CrossRef]
- Zeng, M.; Chai, Z.; Deng, X.; Li, Q.; Feng, S.; Wang, J.; Xu, D. Core–shell CdS@ ZIF-8 structures for improved selectivity in photocatalytic H 2 generation from formic acid. Nano Res. 2016, 9, 2729–2734. [Google Scholar] [CrossRef]
- Duan, C.; Li, F.; Xiao, J.; Liu, Z.; Li, C.; Xi, H. Rapid room-temperature synthesis of hierarchical porous zeolitic imidazolate frameworks with high space-time yield. Sci. China Mater. 2017, 60, 1205–1214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Duan, C.; Li, F.; Yan, X.; Xi, H. Green and rapid synthesis of hierarchical porous zeolitic imidazolate frameworks for enhanced CO2 capture. Inorg. Chim. Acta 2018, 482, 358–363. [Google Scholar] [CrossRef]
- Beckman, E.J. Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit Fluids. 2004, 28, 121–191. [Google Scholar] [CrossRef]
- Zhang, X.; Heinonen, S.; Levänen, E. Applications of supercritical carbon dioxide in materials processing and synthesis. Rsc. Adv. 2014, 4, 61137–61152. [Google Scholar] [CrossRef]
- Wu, W.; Li, W.; Han, B.; Jiang, T.; Shen, D.; Zhang, Z.; Sun, D.; Wang, B. Effect of organic cosolvents on the solubility of ionic liquids in supercritical CO2. J. Chem. Eng. Data 2004, 49, 1597–1601. [Google Scholar] [CrossRef]
- Sinnwell, M.A.; Miller, Q.R.; Liu, L.; Tao, J.; Bowden, M.E.; Kovarik, L.; Barpaga, D.; Han, Y.; Motkuri, R.K.; Sushko, M.L. Kinetics and mechanisms of ZnO to ZIF-8 transformations in supercritical CO2 revealed by in situ X-ray diffraction. ChemSusChem 2020, 13, 2602–2612. [Google Scholar] [CrossRef]
- Marrett, J.M.; Mottillo, C.; Girard, S.; Nickels, C.W.; Do, J.-L.; Dayaker, G.; Germann, L.S.; Dinnebier, R.E.; Howarth, A.J.; Farha, O.K. Supercritical carbon dioxide enables rapid, clean, and scalable conversion of a metal oxide into zeolitic metal–organic frameworks. Cryst. Growth Des. 2018, 18, 3222–3228. [Google Scholar] [CrossRef]
- Kobara, H.; Nakatsuka, K.; Wakisaka, A. Size-selected synthesis of metal nanoparticles by using electrospray in a liquid medium. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123836. [Google Scholar] [CrossRef]
- Konno, H.; Omata, M.; Kikuchi, K.; Gotou, M.; Yasuda, K.; Wakisaka, A. Size-controlled Synthesis of Zeolitic Imidazolate Framework-67 (ZIF-67) using Electrospray in Liquid Phase. Chem. Lett. 2020, 49, 875–878. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Kim, J.; Ahn, W.-S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680. [Google Scholar] [CrossRef]
- Cravillon, J.S.; Munzer, S.-J.; Lohmeier, A.; Feldhoff, K.; Huber Wiebcke, M. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chem. Mater. 2009, 21, 1410. [Google Scholar] [CrossRef]
- Gross, A.F.; Sherman, E.; Vajo, J.J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 2012, 41, 5458–5460. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.C.; Varela-Guerrero, V.; Barnett, G.V.; Jeong, H.-K. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 2010, 26, 14636–14641. [Google Scholar] [CrossRef]
- Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano-and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. J. Mater. Chem. 2011, 23, 2130–2141. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Zhao, Y.M.; Chen, Z.X.; Zhang, G.N.; Weng, L.H.; Zhao, D.Y. Design and generation of extended zeolitic metal–organic frameworks (ZMOFs): Synthesis and crystal structures of zinc (II) imidazolate polymers with zeolitic topologies. Chem. Eur. J. 2007, 13, 4146–4154. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Liu, B.; Liu, R.; Qu, J.; Wang, H.; Zhang, X. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv. 2015, 5, 48433–48441. [Google Scholar] [CrossRef]
- Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K. A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Adv. 2014, 4, 52883–52886. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Mansournia, M. Rapid room temperature synthesis of zeolitic imidazolate framework-7 (ZIF-7) microcrystals. Mater. Lett. 2017, 189, 243–247. [Google Scholar] [CrossRef]
- Wu, X.; Yang, C.; Ge, J. Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresour. Bioprocess. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Jang, M.-S.; Kwon, H.-J.; Ahn, W.-S. Zeolitic imidazolate frameworks: Synthesis, functionalization, and catalytic/adsorption applications. Catal. Surv. Asia. 2014, 18, 101–127. [Google Scholar] [CrossRef]
- Jing, H.-P.; Wang, C.-C.; Zhang, Y.-W.; Wang, P.; Li, R. Photocatalytic degradation of methylene blue in ZIF-8. Rsc Adv. 2014, 4, 54454–54462. [Google Scholar] [CrossRef]
- Bennett, T.D.; Keen, D.A.; Tan, J.C.; Barney, E.R.; Goodwin, A.L.; Cheetham, A.K. Thermal amorphization of zeolitic imidazolate frameworks. Angew. Chem. 2011, 123, 3123–3127. [Google Scholar] [CrossRef]
- Yao, W.; Guo, H.; Liu, H.; Li, Q.; Wu, N.; Li, L.; Wang, M.; Fan, T.; Yang, W. Highly electrochemical performance of Ni-ZIF-8/N S-CNTs/CS composite for simultaneous determination of dopamine, uric acid and L-tryptophan. Microchem. J. 2020, 152, 104357. [Google Scholar] [CrossRef]
- Christus, A.A.B.; Panneerselvam, P.; Ravikumar, A.; Morad, N.; Sivanesan, S. Colorimetric determination of Hg (II) sensor based on magnetic nanocomposite (Fe3O4@ ZIF-67) acting as peroxidase mimics. J. Photochem. Photobiol. A 2018, 364, 715–724. [Google Scholar] [CrossRef]
- Huo, J.-B.; Xu, L.; Yang, J.-C.E.; Cui, H.-J.; Yuan, B.; Fu, M.-L. Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As (III) from water. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 59–68. [Google Scholar] [CrossRef]
- Howarth, A.J.; Peters, A.W.; Vermeulen, N.A.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Best practices for the synthesis, activation, and characterization of metal–organic frameworks. J. Mater. Chem. 2017, 29, 26–39. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Yan, X.; Kong, L.; Zhang, G.; Liu, H.; Qiu, J.; Yeung, K.L. Synthesis of Fe3O4@ ZIF-8 magnetic core–shell microspheres and their potential application in a capillary microreactor. Chem. Eng. Technol. 2013, 228, 398–404. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Cao, J.; Wang, H.; Shao, M.; Huang, H.; Liu, Y.; Kang, Z. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Catal. B-Environ. 2020, 278, 119289. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, T.; Zhang, Y.; Tang, L.; Guo, Q.; Wang, M.; Xie, C.; Zeng, D. Synthesis of core-shell flower-like WO3@ ZIF-71 with enhanced response and selectivity to H2S gas. Solid State Ionics 2020, 350, 115278. [Google Scholar] [CrossRef]
- Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.J.; Belver, C. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. J. Catal. 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Qian, Y.; Deng, Z.; Zhao, P.; Shen, J. Multifunctional Core/Shell Hybrid Fe. Am. J. Nanotechnol. Nanomed. 2018, 1, 16–27. [Google Scholar]
- Wang, L.; Wang, Z.; Xie, L.; Zhu, L.; Cao, X. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. Appl. Mater. Interfaces 2019, 11, 16619–16628. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Li, M.; Ma, L. Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sens. 2016, 1, 243–250. [Google Scholar] [CrossRef]
- Hovestadt, M.; Vargas Schmitz, J.; Weissenberger, T.; Reif, F.; Kaspereit, M.; Schwieger, W.; Hartmann, M. Scale-up of the Synthesis of Zeolitic Imidazolate Framework ZIF-4. Chem. Ing. Tech. 2017, 89, 1374–1378. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, S.; Mao, Z.; Hu, S.; Long, X. A designed ZnO@ ZIF-8 core-shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chem. Eur. J. 2017, 23, 7969–7975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payra, S.; Challagulla, S.; Bobde, Y.; Chakraborty, C.; Ghosh, B.; Roy, S. Probing the photo-and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO. J. Hazard. Mater. 2019, 373, 377–388. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the physisorption characterization of nanoporous gas storage materials. J. Eng. 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Venna, S.R.; Jasinski, J.B.; Carreon, M.A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030–18033. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.C.; Lin, Y.Y.; Zhang, J.P.; Chen, X.M. Ligand-directed strategy for zeolite-type metal–organic frameworks: Zinc (II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557–1559. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. ZIFs-first synthesis. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Wu, H.; Hartman, M.R.; Yildirim, T. Hydrogen and methane adsorption in metal−organic frameworks: A high-pressure volumetric study. J. Phys. Chem. C 2007, 111, 16131–16137. [Google Scholar] [CrossRef]
- Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943. [Google Scholar] [CrossRef]
- Zou, D.; Liu, D.; Zhang, J. From Zeolitic Imidazolate Framework-8 to Metal-Organic Frameworks (MOF s): Representative Substance for the General Study of Pioneering MOF Applications. Energy Environ. Mater. 2018, 1, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Shahmirzaee, M.; Hemmati-Sarapardeh, A.; Husein, M.M.; Schaffie, M.; Ranjbar, M. A review on zeolitic imidazolate frameworks use for crude oil spills cleanup. Adv. Geo-Energy Res. 2019, 3, 320–342. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.; Cho, S.; Park, J.; Jung, G.Y. Molecular Sieve Based on PMMA/ZIF-8 Bilayer for CO-Tolerable H2 Sensor with Superior Sensing Performance. ACS Appl. 2020, 12, 28616–28623. [Google Scholar] [CrossRef] [PubMed]
- Sutrisna, P.D.; Savitri, E.; Himma, N.; Prasetya, N.; Wenten, I. Current perspectives and mini review on zeolitic imidazolate framework-8 (zif-8) membranes on organic substrates. IOP Conf. Ser. Mater. Sci. J. Eng. 2019, 703, 012045. [Google Scholar] [CrossRef]
- Pan, Y.; Lai, Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun. 2011, 47, 10275–10277. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, C.; Nian, P.; Liu, H.; Zhang, X. Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. J. Membr. Sci. 2019, 581, 344–354. [Google Scholar] [CrossRef]
- Lo, Y.; Kang, D.-Y. Pseudopolymorphic seeding for the rational synthesis of hybrid membranes with a zeolitic imidazolate framework for enhanced molecular separation performance. J. Mater. Chem. A 2016, 4, 4172–4179. [Google Scholar] [CrossRef]
- Martinez Joaristi, A.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 2012, 12, 3489–3498. [Google Scholar] [CrossRef]
- Jabarian, S.; Ghaffarinejad, A. Simultaneous Electrosynthesis of Cu-BTC and Zn-BTC Metal-organic Frameworks on Brass. New J. Chem. 2020, 44, 19820–19826. [Google Scholar] [CrossRef]
- Lv, X.-W.; Wang, L.; Wang, G.; Hao, R.; Ren, J.-T.; Liu, X.; Duchesne, P.N.; Liu, Y.; Li, W.; Yuan, Z.-Y. ZIF-supported AuCu nanoalloy for ammonia electrosynthesis from nitrogen and thin air. J. Mater. Chem. A 2020, 8, 8868–8874. [Google Scholar] [CrossRef]
- Ajdari, F.B.; Kowsari, E.; Ehsani, A. P-type conductive polymer/zeolitic imidazolate framework-67 (ZIF-67) nanocomposite film: Synthesis, characterization, and electrochemical performance as efficient electrode materials in pseudocapacitors. J. Colloid Interface Sci. 2018, 509, 189–194. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, Y.; Li, G.; Du, W.; Li, R.; Liu, Y.; Cheng, Z.; Xu, J. Biomimetic synthesis of zeolitic imidazolate frameworks and their application in high performance acetone gas sensors. Sens. Actuators B Chem. 2020, 302, 127187. [Google Scholar] [CrossRef]
- Ahmad, N.; Md Nordin, N.A.H.; Jaafar, J.; Nik Malek, N.A.N.; Ismail, A.F.; Yahya, M.N.F.; Mohd Hanim, S.A.; Abdullah, M.S. Eco-friendly method for synthesis of zeolitic imidazolate framework 8 decorated graphene oxide for antibacterial activity enhancement. Particuology 2020, 49, 24–32. [Google Scholar] [CrossRef]
- Nabipour, H.; Sadr, M.H.; Bardajee, G.R. Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J. Chem. 2017, 41, 7364–7370. [Google Scholar] [CrossRef]
- Poddar, A.; Conesa, J.J.; Liang, K.; Dhakal, S.; Reineck, P.; Bryant, G.; Pereiro, E.; Ricco, R.; Amenitsch, H.; Doonan, C. Encapsulation, Visualization and Expression of Genes with Biomimetically Mineralized Zeolitic Imidazolate Framework-8 (ZIF-8). Small 2019, 15, 1902268. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-Y.; Qin, C.; Wang, X.-L.; Su, Z.-M. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Del. 2013, 10, 89–101. [Google Scholar] [CrossRef]
- Vahed, T.A.; Naimi-Jamal, M.R.; Panahi, L. Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release. J. Drug Deliv. Sci. Technol. 2019, 49, 570–576. [Google Scholar] [CrossRef]
- Ran, J.; Xiao, L.; Wu, W.; Liu, Y.; Qiu, W.; Wu, J. Zeolitic imidazolate framework-8 (ZIF-8) as a sacrificial template: One-pot synthesis of hollow poly (dopamine) nanocapsules and yolk-structured poly (dopamine) nanocomposites. Nanotechnology 2016, 28, 055604. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Liu, D.; Zhang, J. The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. J. Mater. Chem. A 2018, 6, 1887–1899. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Zou, X. Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO2 sorption. Green Chem. 2018, 20, 1074–1084. [Google Scholar] [CrossRef]
- Taheri, M.; Bernardo, I.D.; Lowe, A.; Nisbet, D.R.; Tsuzuki, T. Green full conversion of ZnO nanopowders to well-dispersed zeolitic imidazolate framework-8 (ZIF-8) nanopowders via a stoichiometric mechanochemical reaction for fast dye adsorption. Cryst. Growth Des. 2020, 20, 2761–2773. [Google Scholar] [CrossRef]
- Jaberi, H.; Mosleh, S.; Dashtian, K.; Salehi, Z. Fluid based cigarette carbonaceous hydrochar supported ZIF-8 MOF for CO2 capture process: The engineering parameters determination for the packed bed column design. Chem. Eng. Process 2020, 153, 108001. [Google Scholar] [CrossRef]
- Jaberi, H.; Mosleh, S.; Dashtian, K. Development of Cigarette Carbonaceous Hydrochar/ZIF-67-Based Fluids for CO2 Capture from a Gas Stream in a Packed Column: Mass-Transfer Performance Evaluation. Energy Fuels 2020, 34, 7295–7306. [Google Scholar] [CrossRef]
- Pan, Y.; Xue, M.; Chen, M.; Fang, Q.; Zhu, L.; Valtchev, V.; Qiu, S. ZIF-derived in situ nitrogen decorated porous carbons for CO2 capture. Inorg. Chem. Front. 2016, 3, 1112–1118. [Google Scholar] [CrossRef]
- Bhin, K.M.; Tharun, J.; Roshan, K.R.; Kim, D.-W.; Chung, Y.; Park, D.-W. Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 2017, 17, 112–118. [Google Scholar] [CrossRef]
- Sisi, A.J.; Fathinia, M.; Khataee, A.; Orooji, Y. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. J. Mol. Liq. 2020, 308, 113018. [Google Scholar] [CrossRef]
- Bao, Y.; Oh, W.-D.; Lim, T.-T.; Wang, R.; Webster, R.D.; Hu, X. Surface-nucleated heterogeneous growth of zeolitic imidazolate framework–A unique precursor towards catalytic ceramic membranes: Synthesis, characterization and organics degradation. Chem. Eng. Technol. 2018, 353, 69–79. [Google Scholar] [CrossRef]
- Azad, M.; Rostamizadeh, S.; Estiri, H.; Nouri, F. Ultra-small and highly dispersed Pd nanoparticles inside the pores of ZIF-8: Sustainable approach to waste-minimized Mizoroki–Heck cross-coupling reaction based on reusable heterogeneous catalyst. Appl. Organomet. Chem. 2019, 33, e4952. [Google Scholar] [CrossRef]
- Kuruppathparambil, R.R.; Jose, T.; Babu, R.; Hwang, G.-Y.; Kathalikkattil, A.C.; Kim, D.-W.; Park, D.-W. A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Appl. Catal. B-Environ. 2016, 182, 562–569. [Google Scholar] [CrossRef]
- Dey, C.; Banerjee, R. Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF). Chem. Commun. 2013, 49, 6617–6619. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X. Multifunctional metal–organic frameworks for photocatalysis. Small 2015, 11, 3097–3112. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Islam, D.A.; Acharya, H. Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation. J. Solid State Chem. 2019, 269, 566–574. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Keshavarzi, S.; Oveisi, M.; Rahimi, S.; Hayati, B. Metal-organic framework (ZIF-8)/inorganic nanofiber (Fe2O3) nanocomposite: Green synthesis and photocatalytic degradation using LED irradiation. J. Mol. Liq. 2019, 291, 111333. [Google Scholar] [CrossRef]
- Hassan, N.; Shahat, A.; El-Daidamony, A.; El-Desouky, M.; El-Bindary, A. Synthesis and characterization of ZnO nanoparticles via zeolitic imidazolate framework-8 and its application for removal of dyes. J. Mol. Struct. 2020, 1210, 128029. [Google Scholar] [CrossRef]
- Samadi-Maybodi, A.; Rahmati, A. Synthesis and characterization of dual metal zeolitic imidazolate frameworks and their application for removal of cefixime. J. Coord. Chem. 2019, 72, 3171–3182. [Google Scholar] [CrossRef]
- Jafari, S.; Ghorbani-Shahna, F.; Bahrami, A.; Kazemian, H. Adsorptive removal of toluene and carbon tetrachloride from gas phase using Zeolitic Imidazolate Framework-8: Effects of synthesis method, particle size, and pretreatment of the adsorbent. Microporous Mesoporous Mater. 2018, 268, 58–68. [Google Scholar] [CrossRef]
- Cao, X.; Jiang, Z.; Wang, S.; Hong, S.; Li, H.; Shao, Y.; She, Y.; Wang, J.; Jin, F.; Jin, M. One-pot synthesis of magnetic zeolitic imidazolate framework/grapheme oxide composites for the extraction of neonicotinoid insecticides from environmental water samples. J. Sep. Sci. 2017, 40, 4747–4756. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Liu, H.; Liu, G.; Xu, X.; Li, L.; Lv, J.; Liu, Z.; Zhou, W.; Xu, D. Magnetic solid-phase extraction of dichlorodiphenyltrichloroethane and its metabolites from environmental water samples using ionic liquid modified magnetic multiwalled carbon nanotube/zeolitic imidazolate framework-8 as sorbent. Molecules 2019, 24, 2758. [Google Scholar] [CrossRef] [Green Version]
- Konno, H.; Sasaki, S.; Nakasaka, Y.; Masuda, T. Facile Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Particles Immobilized on Aramid Microfibrils for Wastewater Treatment. Chem. Lett. 2018, 47, 620–623. [Google Scholar] [CrossRef]
Permeance (10−10 mol m−2 s−1 Pa−1) | |||||||
---|---|---|---|---|---|---|---|
Gas Mixture a | H2 | C2= | C2 | C3= | C3 | SF b | IS c |
H2/H3 | 4360 | 9 | 545 | 501 | |||
H2/C3 | 3840 | 164 | 23 | 35 | |||
C2/C3 | 723 | 9 | 80 | 96 | |||
C2=/C3= | 1470 | 165 | 10 | 13 | |||
C2=/C3 | 1500 | 9 | 167 | 190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahsavari, M.; Mohammadzadeh Jahani, P.; Sheikhshoaie, I.; Tajik, S.; Aghaei Afshar, A.; Askari, M.B.; Salarizadeh, P.; Di Bartolomeo, A.; Beitollahi, H. Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications. Materials 2022, 15, 447. https://doi.org/10.3390/ma15020447
Shahsavari M, Mohammadzadeh Jahani P, Sheikhshoaie I, Tajik S, Aghaei Afshar A, Askari MB, Salarizadeh P, Di Bartolomeo A, Beitollahi H. Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications. Materials. 2022; 15(2):447. https://doi.org/10.3390/ma15020447
Chicago/Turabian StyleShahsavari, Mahboobeh, Peyman Mohammadzadeh Jahani, Iran Sheikhshoaie, Somayeh Tajik, Abbas Aghaei Afshar, Mohammad Bagher Askari, Parisa Salarizadeh, Antonio Di Bartolomeo, and Hadi Beitollahi. 2022. "Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications" Materials 15, no. 2: 447. https://doi.org/10.3390/ma15020447
APA StyleShahsavari, M., Mohammadzadeh Jahani, P., Sheikhshoaie, I., Tajik, S., Aghaei Afshar, A., Askari, M. B., Salarizadeh, P., Di Bartolomeo, A., & Beitollahi, H. (2022). Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications. Materials, 15(2), 447. https://doi.org/10.3390/ma15020447