EIS Characterization of Ti Alloys in Relation to Alloying Additions of Ta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Sample Preparation
2.2. Microstructural Characterization
2.3. Electrochemical Measurements
3. Results and Discussions
3.1. Electrochemical Impedance Spectroscopy
3.1.1. Plots Interpretation
3.1.2. Ti–5Ta
3.1.3. Ti–15Ta
3.1.4. Ti–25Ta
3.1.5. Ti–30Ta
3.2. Equivalent Circuits
- − Z is the impedance of the constant phase element CPE
- − j is the imaginary number (j2 = −1)
- − ω is the angular frequency (rad·s−1)
- − nπ/2 is the constant phase angle of the constant phase element (rad)
- − Y0 is the constant of the constant phase element [S(s·rad−1)n]
4. Conclusions
- The Nyquist plots for all the Ti–Ta alloys show the same incomplete semicircles with large diameters increasing with the potential (up until a critical value for each alloy) due to the improvement of the protective properties of the passive film formed on the surface of the alloy.
- For all Ti–Ta alloys, the Bode phase plots exhibited one phase angle—typical for a capacitive barrier passive layer formed on the surface of an alloy.
- Impedance spectra are fitted with a one-time constant equivalent circuit, common for a compact oxide layer, for all Ti–Ta alloys in extra-cellular fluids. After a long immersion period in simulated body fluid, the passive film is thicker and develops a bi-layer structure: an outer porous layer and an inner compact layer. Tantalum addition increases the stability of the passive film due to the development of Ta2O5.
- Of the Ti–Ta alloys, Ti–25Ta demonstrates excellent passive layer and corrosion resistance properties, and thus it seems to be a promising product for metallic medical devices.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rack, H.J.; Qazi, J.I. Titanium alloys for biomedical applications. Mater. Sci. Eng. C 2006, 26, 1269–1277. [Google Scholar] [CrossRef]
- Lee, T.; Lee, S.; Kim, I.S.; Moon, Y.H.; Kim, H.S.; Park, C.H. Breaking the limit of Young’s modulus in low-cost Ti–Nb–Zr alloy for biomedical implant applications. J. Alloys Compd. 2020, 828, 154401. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M.; Akahori, T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications. Mater. Sci. Eng. A 2004, 371, 283–290. [Google Scholar] [CrossRef]
- Verestiuc, L.; Spataru, M.-C.; Baltatu, M.S.; Butnaru, M.; Solcan, C.; Sandu, A.V.; Voiculescu, I.; Geanta, V.; Vizureanu, P. New Ti–Mo–Si materials for bone prosthesis applications. J. Mech. Behav. Biomed. Mater. 2021, 113, 104198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.C.; Chen, L.Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Souto, B.M.; Burstein, G.T. A preliminary investigation into the microscopic depassivation of passive titanium implant materials in vitro. J. Mater. Sci. Mater. Med. 1996, 7, 337–343. [Google Scholar] [CrossRef]
- Kokubo, T.; Kim, H.-M.; Kawashita, M.; Nakamura, T. REVIEW Bioactive metals: Preparation and properties. J. Mater. Sci. Mater. Med. 2004, 15, 99–107. [Google Scholar] [CrossRef]
- Khadija, G.; Saleem, A.; Akhtar, Z.; Naqvi, Z.; Gull, M.; Masood, M.; Mukhtar, S.; Batool, M.; Saleem, N.; Rasheed, T.; et al. Short term exposure to titanium, aluminum and vanadium (Ti 6Al 4V) alloy powder drastically affects behavior and antioxidant metabolites in vital organs of male albino mice. Toxicol. Rep. 2018, 5, 765–770. [Google Scholar] [CrossRef]
- Kim, T.I.; Han, J.H.; Lee, I.S.; Lee, K.H.; Shin, M.C.; Choi, B.B. New titanium alloys for biomaterials: A study of mechanical and corrosion properties and cytotoxicity. Biomed. Mater. Eng. 1997, 7, 253–263. [Google Scholar] [CrossRef]
- Perdomo-Socorro, P.P.; Florido-Suárez, N.R.; Verdú-Vázquez, A.; Mirza-Rosca, J.C. Comparative EIS study of titanium-based materials in high corrosive environments. Int. J. Surf. Sci. Eng. 2021, 15, 152–164. [Google Scholar] [CrossRef]
- Florido-Suarez, N.R.; Verdu-Vazquez, A.; Socorro-Perdomo, P.P.; Mirza-Rosca, J.C. Past Advances and Future Perspective of Ti-Ta Alloys. Glob. J. Eng. Sci. 2021, 7, 20–22. [Google Scholar] [CrossRef]
- Geanta, V.; Voiculescu, I.; Vizureanu, P.; Victor Sandu, A. High Entropy Alloys for Medical Applications. In Engineering Steels and High Entropy-Alloys; IntechOpen: London, UK, 2020; pp. 4–12. [Google Scholar] [CrossRef] [Green Version]
- Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and its Prevention—A Review. Recent Patents Corros. Sci. 2010, 2, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Tang, H.P.; Li, Y.; Qian, M. Liquid metal dealloying of titanium-tantalum (Ti-Ta) alloy to fabricate ultrafine Ta ligament structures: A comparative study in molten copper (Cu) and Cu-based alloys. Corros. Sci. 2020, 169. [Google Scholar] [CrossRef]
- Huang, S.; Sing, S.L.; de Looze, G.; Wilson, R.; Yeong, W.Y. Laser powder bed fusion of titanium-tantalum alloys: Compositions and designs for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020, 108, 103775. [Google Scholar] [CrossRef]
- Wu, C.; Peng, P.; Chou, H.; Ou, K. Microstructural, mechanical and biological characterizations of the promising titanium-tantalum alloy for biomedical applications. J. Alloys Compd. 2018, 735, 2604–2610. [Google Scholar] [CrossRef]
- Mendis, S.; Xu, W.; Tang, H.P.; Jones, L.A.; Liang, D.; Thompson, R.; Choong, P.; Brandt, M. Characteristics of oxide films on Ti-(10–75) Ta alloys and their corrosion performance in an aerated Hank’ s balanced salt solution. Appl. Surface Sci. 2020, 506, 145013. [Google Scholar] [CrossRef]
- Chen, G.; Yin, J.; Zhao, S.; Tang, H.; Qu, X. Microstructure and tensile properties of a Ti-28Ta alloy studied by transmission electron microscopy and digital image correlation. Int. J. Refract. Met. Hard Mater. 2019, 81, 71–77. [Google Scholar] [CrossRef]
- Zhao, S.; Yin, J.; Shen, L.; Ge, Y.; Chen, G. Ti-60Ta Powders Produced by PREP and Their Properties. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 2017, 46, 1679–1683. [Google Scholar]
- Capellato, P.; Sachs, D.; Vasconcelos, L.V.B.; Melo, M.M.; Silva, G.; Ranieri, M.G.A.; Zavaglia, C.A.d.C.; Nakazato, R.Z.; Alves Claro, A.P.R. Optimization of anodization parameters in Ti-30Ta alloy. Metals (Basel) 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Soro, N.; Attar, H.; Brodie, E.; Veidt, M.; Molotnikov, A.; Dargusch, M.S. Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications. J. Mech. Behav. Biomed. Mater. 2019, 97, 149–158. [Google Scholar] [CrossRef]
- Traxel, K.D.; Bandyopadhyay, A. Modeling and experimental validation of additively manufactured tantalum-titanium bimetallic interfaces. Mater. Des. 2021, 207, 109793. [Google Scholar] [CrossRef]
- Zhao, D.; Liang, H.; Han, C.; Li, J.; Liu, J.; Zhou, K.; Yang, C.; Wei, Q. 3D printing of a titanium-tantalum Gyroid scaffold with superb elastic admissible strain, bioactivity and in-situ bone regeneration capability. Addit. Manuf. 2021, 47, 102223. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M.; Akahori, T. Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf. Mater. Sci. Eng. A 2008, 483–484, 153–156. [Google Scholar] [CrossRef]
- Al-Muhanna, K.; Habib, K. Corrosion behavior of different alloys exposed to continuous flowing seawater by electrochemical impedance spectroscopy (EIS). Desalination 2010, 250, 404–407. [Google Scholar] [CrossRef]
- Escobar Claros, C.A.; Contri Campanelli, L.; Moreira Jorge, A.; Leprêtre, J.C.; Bolfarini, C.; Roche, V. Corrosion behaviour of biomedical β-titanium alloys with the surface-modified by chemical etching and electrochemical methods. Corros. Sci. 2021, 188. [Google Scholar] [CrossRef]
- Mareci, D.; Chelariu, R.; Gordin, D.M.; Ungureanu, G.; Gloriant, T. Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomater. 2009, 5, 3625–3639. [Google Scholar] [CrossRef]
- ASTM International. ASTM E3-11(2017), Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Smith, B.S.; Capellato, P.; Kelley, S.; Gonzalez-Juarrero, M.; Popat, K.C. Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater. Sci. 2013, 1, 322–332. [Google Scholar] [CrossRef]
- Welsch, G.; Boyer, R.; Collings, E.W. (Eds.) Materials Properties Handbook: Titanium Alloys, 4th ed.; ASM International: Geauga County, OH, USA, 1993. [Google Scholar]
- Vaswani-Reboso, J.; Florido-Suarez, N.; Socorro-Perdomo, P.; Mirza-Rosca, J. Study of Biocompatibility, Mechanical Properties and Microstructural Analysis af Ag-Pd Alloy. Microsc. Microanal. 2021, 27, 550–552. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M. Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications. Mater. Sci. Eng. C 2009. [Google Scholar] [CrossRef]
- Garcia-Falcon, C.M.; Gil-Lopez, T.; Verdu-Vazquez, A.; Mirza-Rosca, J.C. Electrochemical characterization of some cobalt base alloys in Ringer solution. Mater. Chem. Phys. 2021, 260, 124164. [Google Scholar] [CrossRef]
- Garcia-Falcon, C.M.; Gil-Lopez, T.; Verdu-Vazquez, A.; Mirza-Rosca, J.C. Corrosion behavior in Ringer solution of several commercially used metal alloys. Anti-Corrosion Methods Mater. 2021, 68, 324–330. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Fan, L.; Zhong, M.; Cheng, L.; Cui, Z. Understanding the effect of fluoride on corrosion behavior of pure titanium in different acids. Corros. Sci. 2021, 192, 109812. [Google Scholar] [CrossRef]
- López Ríos, M.; Socorro Perdomo, P.P.; Voiculescu, I.; Geanta, V.; Crăciun, V.; Boerasu, I.; Mirza Rosca, J.C. Effects of nickel content on the microstructure, microhardness and corrosion behavior of high-entropy AlCoCrFeNix alloys. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Yu, X.Y.; Zhu, W.Q.; Chen, W.; Chen, W.Q.; Zhang, S.M.; Qiu, J. Osteoclast-mediated biocorrosion of pure titanium in an inflammatory microenvironment. Mater. Sci. Eng. C 2021, 119, 111610. [Google Scholar] [CrossRef] [PubMed]
- Bojinov, M.; Betova, I.; Karastoyanov, V. Modeling barrier film growth and dissolution on titanium based on EIS, XPS and photocurrent data. Electrochim. Acta 2020, 344, 136137. [Google Scholar] [CrossRef]
- Huo, W.T.; Zhao, L.Z.; Yu, S.; Yu, Z.T.; Zhang, P.X.; Zhang, Y.S. Significantly enhanced osteoblast response to nano-grained pure tantalum. Sci. Rep. 2017, 7, 40868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattah-alhosseini, A.; Elmkhah, H.; Ansari, G.; Attarzadeh, F.; Imantalab, O. A comparison of electrochemical behavior of coated nanostructured Ta on Ti substrate with pure uncoated Ta in Ringer’s physiological solution. J. Alloys Compd. 2018, 739, 918–925. [Google Scholar] [CrossRef]
- Hee, A.C.; Martin, P.J.; Bendavid, A.; Jamali, S.S.; Zhao, Y. Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti-13Nb-13Zr alloy for bio-implants applications. Wear 2018, 400, 31–42. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Pourmahmoud, M. Passive and Semiconducting Properties Assessment of Commercially Pure Tantalum in Hank’s Physiological Solution. J. Mater. Eng. Perform. 2018, 27, 116–123. [Google Scholar] [CrossRef]
- Moreto, J.A.; Marino, C.E.B.; Bose Filho, W.W.; Rocha, L.A.; Fernandes, J.C.S. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication. Corros. Sci. 2014, 84, 30–41. [Google Scholar] [CrossRef]
- Sowa, M.; Simka, W. Electrochemical impedance and polarization corrosion studies of tantalum surface modified by DC Plasma electrolytic oxidation. Materials (Basel) 2018, 11, 545. [Google Scholar] [CrossRef] [Green Version]
- Pourbaix, M.; Zhang, H.; Pourbaix, A. Presentation of an Atlas of chemical and electrochemical equilibria in the presence of a gaseous phase. Mater. Sci. Forum 1997, 251–254, 143–148. [Google Scholar] [CrossRef]
Alloy | Ti | Ta | O | N | C |
---|---|---|---|---|---|
(wt. %) | (wt. %) | (wt. ppm) | (wt. ppm) | (wt. ppm) | |
Ti–5Ta | 94.20 ± 0.06 | 4.92 ± 0.05 | 180 ± 14 | 80 ± 7 | 110 ± 8 |
Ti–15Ta | 84.41 ± 0.06 | 14.82 ± 0.07 | 162 ± 11 | 75 ± 5 | 101 ± 6 |
Ti–25Ta | 74.52 ± 0.05 | 24.89 ± 0.09 | 158 ± 12 | 82 ± 6 | 103 ± 5 |
Ti–30Ta | 69.61 ± 0.07 | 29.67 ± 0.05 | 172 ± 11 | 78 ± 5 | 111 ± 4 |
Compound | Composition [g/L] |
---|---|
NaCl | 6.80 |
KCl | 0.40 |
CaCl2 | 0.20 |
MgSO4·7H2O | 0.20 |
NaH2PO4·H2O | 0.14 |
NaHCO3 | 2.20 |
Glucose | 1.00 |
Alloy | Ti | Ta | ||||
---|---|---|---|---|---|---|
at.% | wt.% | Error, % | at.% | wt.% | Error, % | |
Ti–5Ta | 99.01 | 94.95 | 1.22 | 0.88 | 4.38 | 3.67 |
Ti–15Ta | 95.62 | 83.95 | 1.95 | 4.38 | 14.87 | 2.24 |
Ti–25Ta | 91.76 | 74.63 | 2.03 | 8.23 | 24.83 | 2.15 |
Ti–30Ta | 90.06 | 69.74 | 1.81 | 9.95 | 29.72 | 1.98 |
Alloy | Ecorr | icorr | ipass | Rp |
---|---|---|---|---|
(mV vs. SCE) | (µA/cm2) | (µA/cm2) | (kΩ·cm2) | |
Ti–5Ta | −22 ± 4 | 0.67 ± 0.06 | 0.61 ± 0.11 | 522 ± 16 |
Ti–15Ta | −70 ± 3 | 0.52 ± 0.12 | 0.58 ± 0.05 | 501 ± 23 |
Ti–25Ta | −10 ± 3 | 0.43 ± 0.04 | 0.51 ± 0.16 | 598 ± 28 |
Ti–30Ta | −38 ± 4 | 0.58 ± 0.21 | 0.57 ± 0.18 | 495 ± 12 |
Alloy | Rs (Ω·cm2) | Y0p·105 (S·sn/cm2) 0 < n < 1 | no | Rl (Ω·cm2) | Y0c·105 (S·sn/cm2) 0 < n < 1 | nc | Rc (kΩ·cm2) | χ2·104 |
---|---|---|---|---|---|---|---|---|
Ti–5Ta | 34.2 | 1.72 | 0.59 | 500.6 | 2.71 | 0.89 | 153.1 | 7.24 |
Ti–15Ta | 59.0 | 9.90 | 0.78 | 887.5 | 17.6 | 0.91 | 322.4 | 4.37 |
Ti–25Ta | 11.5 | 1.74 | 0.72 | 14.5 | 4.31 | 0.94 | 577.3 | 4.89 |
Ti–30Ta | 27.1 | 6.13 | 0.79 | 28.1 | 1.10 | 0.90 | 485.9 | 1.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socorro-Perdomo, P.P.; Florido-Suárez, N.R.; Mirza-Rosca, J.C.; Saceleanu, M.V. EIS Characterization of Ti Alloys in Relation to Alloying Additions of Ta. Materials 2022, 15, 476. https://doi.org/10.3390/ma15020476
Socorro-Perdomo PP, Florido-Suárez NR, Mirza-Rosca JC, Saceleanu MV. EIS Characterization of Ti Alloys in Relation to Alloying Additions of Ta. Materials. 2022; 15(2):476. https://doi.org/10.3390/ma15020476
Chicago/Turabian StyleSocorro-Perdomo, Pedro P., Néstor R. Florido-Suárez, Julia C. Mirza-Rosca, and Mircea Vicentiu Saceleanu. 2022. "EIS Characterization of Ti Alloys in Relation to Alloying Additions of Ta" Materials 15, no. 2: 476. https://doi.org/10.3390/ma15020476
APA StyleSocorro-Perdomo, P. P., Florido-Suárez, N. R., Mirza-Rosca, J. C., & Saceleanu, M. V. (2022). EIS Characterization of Ti Alloys in Relation to Alloying Additions of Ta. Materials, 15(2), 476. https://doi.org/10.3390/ma15020476