Preparation and Characterization of Graphene Oxide/Polyaniline/Carbonyl Iron Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CIP-GO-PANI Nanocomposites
2.3. Characterization
3. Results and Discussion
3.1. SEM Analysis
3.2. XRD Analysis
3.3. FT-IR Analysis
3.4. Analysis of Electromagnetic Parameters
3.5. Reflex Loss Curve Analysis
3.6. Electrochemical Measurement
3.6.1. Electrochemical Impedance Spectroscopy (EIS)
3.6.2. Potentiodynamic Polarization Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadi, S.; Afshar Taromi, F.; Shariatpanahi, H.; Neshati, J.; Hemmati, M. Electrochemical and Anticorrosion Behavior of Functionalized Graphite Nanoplatelets Epoxy Coating. J. Ind. Eng. Chem. 2014, 20, 4124–4139. [Google Scholar] [CrossRef]
- Di, H.H.; Yu, Z.X.; Ma, Y.; Li, F.; Lv, L.; Pan, Y.; Lin, Y.; Liu, Y.; He, Y. Graphene Oxide Decorated with Fe3O4 Nanoparticles with Advanced Anticorrosive Properties of Epoxy Coatings. J. Taiwan Inst. Chem. E 2016, 64, 244–251. [Google Scholar] [CrossRef]
- Pan, T.; Yu, Q.F.; Miao, T. Synthesizing and Characterizing a Waterborne Polyaniline for Corrosion Protection of Steels. Surf. Rev. Lett. 2015, 22, 1550021. [Google Scholar] [CrossRef]
- You, W.B.; She, W.; Liu, Z.W.; Bi, H.; Che, R.C. High-Temperature Annealing of an Iron Microplate with Excellent Microwave Absorption Performance and its Direct Micromagnetic Analysis by Electron Holography and Lorentz Microscopy. J. Mater. Chem. C 2017, 5, 6047–6053. [Google Scholar] [CrossRef]
- Fan, M.; He, Z.F.; Pang, H. Microwave Absorption Enhancement of CIP/PANI Composites. Synth. Met. 2013, 166, 1–6. [Google Scholar] [CrossRef]
- Tang, J.H.; Ma, L.; Huo, Q.S.; Yan, J.; Tian, N.; Xu, F.F. The Influence of PVP On the Synthesis and Electromagnetic Properties of PANI/PVP/CIP Composites. Polym. Compos. 2015, 36, 1799–1806. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, J.H.; Yao, W.; Xu, J.G.; Li, T. Preparation of Reduced Graphene Oxide/Flake Carbonyl Iron Powders/Polyaniline Composites and their Enhanced Microwave Absorption Properties. J. Alloys Compd. 2015, 636, 310–316. [Google Scholar] [CrossRef]
- Xu, Y.G.; Yan, Z.Q.; Zhang, D.Y. Microwave Absorbing Property of a Hybrid Absorbent with Carbonyl Irons Coating on the Graphite. Appl. Surf. Sci. 2015, 356, 1032–1038. [Google Scholar] [CrossRef]
- Wan, Y.J.; Tang, L.C.; Gong, L.X.; Yan, D.; Li, Y.B.; Wu, L.B.; Jiang, J.X.; Lai, G.Q. Grafting of Epoxy Chains onto Graphene Oxide for Epoxy Composites with Improved Mechanical and Thermal Properties. Carbon 2014, 69, 467–480. [Google Scholar] [CrossRef]
- Fei, X.M.; Xia, L.; Chen, M.Q.; Wei, W.; Luo, J.; Liu, X.Y.; Ngai, T. Preparation and Application of Water-in-Oil Emulsions Stabilized by Modified Graphene Oxide. Materials 2016, 9, 731. [Google Scholar] [CrossRef]
- Elaine, A.; Cintia, O.; Francisco, L.; José, I.I.; Xavier, R.; Carlos, A. Study of Epoxy and Alkyd Coatings Modified with Emeraldine Base Form of Polyaniline. Prog. Org. Coat. 2007, 58, 316–322. [Google Scholar]
- Chen, C.L.; He, Y.; Xiao, G.Q.; Zhong, F.; Xie, P.; Li, H.J.; He, L. Co-Modification of Epoxy Based Polyhedral Oligomeric silsesquioxanes and Polyaniline on Graphene for Enhancing Corrosion Resistance of Waterborne Epoxy Coating. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126190. [Google Scholar] [CrossRef]
- Xiao, F.J.; Qian, C.; Guo, M.Y.; Wang, J.Z.; Yan, X.R.; Li, H.L.; Yue, L. Anticorrosive Durability of Zinc-Based Waterborne Coatings Enhanced by Highly Dispersed and Conductive Polyaniline/Graphene Oxide Composite. Prog. Org. Coat. 2018, 125, 79–88. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, X.Y.; Li, J.; Guo, S.Y. Improved Microwave Absorbing Property Provided by the Filler’s Alternating Lamellar Distribution of Carbon Nanotube/Carbonyl Iron/Poly (Vinyl Chloride) Composites. Compos. Sci. Technol. 2018, 158, 175–185. [Google Scholar] [CrossRef]
- Chen, Y.P.; Xu, G.Y.; Guo, T.C.; Zhou, N. Infrared Emissivity and Microwave Absorbing Property of Epoxy-Polyurethane/Annealed Carbonyl Iron Composites Coatings. Sci. China Technol. Sci. 2012, 55, 623–628. [Google Scholar] [CrossRef]
- Zheng, D.L.; Liu, T.; Zhou, L.; Xu, Y.G. Electromagnetic Absorbing Property of the Flaky Carbonyl Iron Particles by Chemical Corrosion Process. J. Magn. Magn. Mater. 2016, 419, 119–124. [Google Scholar] [CrossRef]
- Xu, Y.G.; Yuan, L.M.; Zhang, D.Y. A Chiral Microwave Absorbing Absorbent of Fe–CoNiP Coated on Spirulina. Mater. Chem. Phys. 2015, 168, 101–107. [Google Scholar] [CrossRef]
- Hayatgheib, Y.; Ramezanzadeh, B.; Kardar, P.; Mahdavian, M. A Comparative Study on Fabrication of a Highly Effective Corrosion Protective System Based on Graphene Oxide-Polyaniline Nanofibers/Epoxy Composite. Corros. Sci. 2018, 133, 358–373. [Google Scholar] [CrossRef]
- Sun, J.; Wang, L.M.; Yang, Q.; Shen, Y.; Zhang, X. Preparation of Copper-Cobalt-Nickel Ferrite/Graphene Oxide/Polyaniline Composite and its Applications in Microwave Absorption Coating. Prog. Org. Coat. 2020, 141, 105552. [Google Scholar] [CrossRef]
- Sanches, E.A.; Soares, J.C.; Iost, R.M.; Marangoni, V.S.; Trovati, G.; Batista, T.; Mafud, A.C.; Zucolotto, V.; Mascarenhas, Y.P. Structural Characterization of Emeraldine-Salt Polyaniline/Gold Nanoparticles Complexes. J. Nanomater. 2011, 2011, 697071. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Fan, Z.J.; Qian, W.Z.; Zhang, M.L.; Shen, X.D.; Wei, F. Preparation of Graphene Nanosheet/Carbon Nanotube/Polyaniline Composite as Electrode Material for Supercapacitors. J. Power Sources 2009, 195, 3041–3045. [Google Scholar] [CrossRef]
- Chen, X.N.; Meng, F.C.; Zhou, Z.W.; Tian, X.; Shan, L.M.; Zhu, S.B.; Xu, X.L.; Jiang, M.; Wang, L.; Hui, D.; et al. One-Step Synthesis of Graphene/Polyaniline Hybrids by in situ Intercalation Polymerization and their Electromagnetic Properties. Nanoscale 2014, 6, 8140–8148. [Google Scholar] [CrossRef] [PubMed]
- Ramezanzadeh, B.; Moghadam, M.M.; Shohani, N.; Mahdavian, M. Effects of Highly Crystalline and Conductive Polyaniline/Graphene Oxide Composites on the Corrosion Protection Performance of a Zinc-Rich Epoxy Coating. Chem. Eng. J. 2017, 320, 363–375. [Google Scholar] [CrossRef]
- Sun, Y.B.; Wang, Q.; Chen, C.L.; Tan, X.L.; Wang, X.K. Interaction between Eu(III) and Graphene Oxide Nanosheets Investigated by Batch and Extended X-ray Absorption Fine Structure Spectroscopy and by Modeling Techniques. Environ. Sci. Technol. 2012, 46, 6020–6027. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhu, D.M.; Zhou, W.C.; Luo, F. Enhanced Microwave Absorbing Properties and Heat Resistance of Carbonyl Iron by Electroless Plating Co. J. Magn. Magn. Mater. 2015, 393, 445–451. [Google Scholar] [CrossRef]
- Jing, Y.; Ying, H.; Xuefang, C.; Chao, W. Conducting Polymers-NiFe2O4 Coated on Reduced Graphene Oxide Sheets as Electromagnetic (Em) Wave Absorption Materials. Synth. Met. 2016, 221, 291–298. [Google Scholar]
- Zhai, Y.; Zhu, D.M.; Zhou, W.C.; Min, D.D.; Luo, F. Enhanced Impedance Matching and Microwave Absorption Properties of the Mams by Using Ball-Milled Flaky Carbonyl Iron-BaFe12O19 as Compound Absorbent. J. Magn. Magn. Mater. 2018, 467, 82–88. [Google Scholar] [CrossRef]
- Zou, H.; Li, S.H.; Zhang, L.Q.; Yan, S.N.; Wu, H.G.; Zhang, S.; Tian, M. Determining Factors for High Performance Silicone Rubber Microwave Absorbing Materials. J. Magn. Magn. Mater. 2011, 323, 1643–1651. [Google Scholar] [CrossRef]
- Feng, Y.B.; Li, Y.J.; Qiu, T. Preparation and Characterization of Carbonyl Iron/Glass Composite Absorber as Matched Load for Isolator. J. Magn. Magn. Mater. 2012, 324, 3034–3039. [Google Scholar] [CrossRef]
- Xu, Y.G.; Yuan, L.M.; Cai, J.; Zhang, D.Y. Smart Absorbing Property of Composites with MWCNTs and Carbonyl Iron as the Filler. J. Magn. Magn. Mater. 2013, 343, 239–244. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.P.; Song, L.L.; Hu, J.J.; Zeng, Y.S. Heterogeneous Nucleation Promoting Formation and Enhancing Microwave Absorption Properties in Hierarchical Sandwich-Like Polyaniline/Graphene Oxide Induced by Mechanical Agitation. Compos. Sci. Technol. 2019, 182, 107780. [Google Scholar] [CrossRef]
- He, Y.; Pan, S.K.; Cheng, L.C.; Luo, J.L.; Yu, J.J. Improving Microwave Absorbing Property of Flaky Ce2Co17 Alloys by Ni Content and Carbonyl Iron Powder. J. Electron. Mater. 2019, 48, 1574–1581. [Google Scholar] [CrossRef]
- Xu, Y.G.; Zhang, D.Y.; Cai, J.; Yuan, L.M.; Zhang, W.Q. Effects of Multi-Walled Carbon Nanotubes on the Electromagnetic Absorbing Characteristics of Composites Filled with Carbonyl Iron Particles. J. Mater. Sci. Technol. 2012, 28, 34–40. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.M.; Zhang, W.Z.; Huang, S. Facile Synthesis of Ni/PANI/RGO Composites and their Excellent Electromagnetic Wave Absorption Properties. Synth. Met. 2015, 210, 165–170. [Google Scholar] [CrossRef]
- Rita, M.; Abdul, R.S.; Prvan, K.K.; Kantesh, B. Mechanical, Tribological and Anti-Corrosive Properties of Polyaniline/Graphene Coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys. J. Mater. Sci. Technol. 2019, 35, 1767–1778. [Google Scholar]
- Zhong, F.; He, Y.; Wang, P.Q.; Chen, C.L.; Li, H.J.; Zhang, C.; Xie, P. Novel Graphene/Hollow Polyaniline Carrier with High Loading of Benzotriazole Improves Barrier and Long-Term Self-Healing Properties of Nanocomposite Coatings. Prog. Org. Coat. 2021, 151, 106086. [Google Scholar] [CrossRef]
- Lin, Y.T.; Don, T.M.; Wong, C.J.; Meng, F.C.; Lin, Y.J.; Lee, S.Y.; Lee, C.F.; Chiu, W.Y. Improvement of Mechanical Properties and Anticorrosion Performance of Epoxy Coatings by the Introduction of Polyaniline/Graphene Composite. Surf. Coat. Technol. 2019, 374, 1128–1138. [Google Scholar] [CrossRef]
- Zhou, C.; Hong, M.; Yang, Y.; Hu, N.T.; Zhou, Z.H.; Zhang, L.Y.; Zhang, Y.F. Engineering Sulfonated Polyaniline Molecules on Reduced Graphene Oxide Nanosheets for High-Performance Corrosion Protective Coatings. Appl. Surf. Sci. 2019, 484, 663–675. [Google Scholar] [CrossRef]
- Chaudhari, S.; Patil, P.P. Inhibition of Nickel Coated Mild Steel Corrosion by electrosynthesized Polyaniline Coatings. Electrochim. Acta 2010, 56, 3049–3059. [Google Scholar] [CrossRef]
- Qiu, C.C.; Liu, D.M.; Jin, K.; Fang, L.; Xie, G.X.; Robertson, J. Electrochemical Functionalization of 316 Stainless Steel with Polyaniline-Graphene Oxide: Corrosion Resistance Study. Mater. Chem. Phys. 2017, 198, 90–98. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, S.; Hong, R.Y. Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection. Coatings 2020, 10, 1215. [Google Scholar] [CrossRef]
Sample | Ecorr (V) | Icorr (A/cm2) | Corrosion Rate (mm/Year) |
---|---|---|---|
Bare steel | −1.023 | 1.58 × 10−4 | 1.85 × 10−0 |
Epoxy | −0.712 | 1.39 × 10−8 | 1.63 × 10−4 |
Epoxy/PANI | −0.483 | 1.99 × 10−9 | 2.33 × 10−5 |
Epoxy/GOPANI | −0.450 | 1.67 × 10−9 | 1.96 × 10−5 |
Epoxy/CIP | −1.067 | 5.13 × 10−5 | 0.60 × 10−0 |
Epoxy/GO-PANI:CIP = 1:2 | −0.772 | 6.71 × 10−8 | 7.87 × 10−4 |
Epoxy/GO-PANI:CIP = 2:1 | −0.680 | 2.28 × 10−9 | 2.67 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-Y.; Wu, J. Preparation and Characterization of Graphene Oxide/Polyaniline/Carbonyl Iron Nanocomposites. Materials 2022, 15, 484. https://doi.org/10.3390/ma15020484
Huang Y-Y, Wu J. Preparation and Characterization of Graphene Oxide/Polyaniline/Carbonyl Iron Nanocomposites. Materials. 2022; 15(2):484. https://doi.org/10.3390/ma15020484
Chicago/Turabian StyleHuang, Yun-Yun, and Jian Wu. 2022. "Preparation and Characterization of Graphene Oxide/Polyaniline/Carbonyl Iron Nanocomposites" Materials 15, no. 2: 484. https://doi.org/10.3390/ma15020484
APA StyleHuang, Y. -Y., & Wu, J. (2022). Preparation and Characterization of Graphene Oxide/Polyaniline/Carbonyl Iron Nanocomposites. Materials, 15(2), 484. https://doi.org/10.3390/ma15020484