Symmetry Analysis of Magnetoelectric Effects in Perovskite-Based Multiferroics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multiferroic BiFeO3
2.2. Magnetoelectric Properties of RCrO3
2.3. Ruddlesden–Popper Structures
3. Results and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Manipatruni, S.; Nikonov, D.E.; Lin, C.-C.; Gosavi, T.A.; Liu, H.; Prasad, B.; Huang, Y.-L.; Bonturim, E.; Ramesh, R.; Young, I.A. Scalable Energy-Efficient Magnetoelectric Spin–Orbit Logic. Nature 2019, 565, 35–42. [Google Scholar] [CrossRef]
- Dubrovin, R.M.; Alyabyeva, L.N.; Siverin, N.V.; Gorshunov, B.P.; Novikova, N.N.; Boldyrev, K.N.; Pisarev, R.V. Incipient multiferroicity in Pnma fluoroperovskite NaMnF3. Phys. Rev. B 2020, 101, 180403. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X. A brief review on perovskite multiferroics. Ferroelectrics 2017, 507, 69–85. [Google Scholar] [CrossRef]
- Ke, X.; Birol, T.; Misra, R.; Lee, J.-H.; Kirby, B.; Schlom, D.G.; Fennie, C.J.; Freeland, J.W. Structural control of magnetic anisotropy in a strain-driven multiferroic EuTiO3 thin film. Phys. Rev. B 2013, 88, 094434. [Google Scholar] [CrossRef] [Green Version]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Lin, P.-T.; Li, X.; Zhang, L.; Yin, J.-H.; Cheng, X.-W.; Wang, Z.-H.; Wu, Y.-C.; Wu, G.-H. La-doped BiFeO3: Synthesis and multiferroic property study. Chin. Phys. B 2014, 23, 047701. [Google Scholar] [CrossRef]
- Savosta, M.M.; Novák, P.; Maryško, M.; Jirák, Z.; Hejtmánek, J.; Englich, J.; Kohout, J.; Martin, C.; Raveau, B. Coexistence of antiferromagnetism and ferromagnetism in Ca1−xPrxMnO3 (x<~0.1)manganites. Phys. Rev. B 2000, 62, 9532–9537. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; Mukhin, A.A. Magnetoelectric interactions and phase transitions in a new class of multiferroics with improper electric polarization. JETP Lett. 2008, 88, 505–510. [Google Scholar] [CrossRef]
- Shikin, A.M.; Estyunin, D.A.; Zaitsev, N.L.; Glazkova, D.; Klimovskikh, I.I.; Filnov, S.O.; Rybkin, A.G.; Schwier, E.F.; Kumar, S.; Kimura, A.; et al. Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study. Phys. Rev. B 2021, 104, 115168. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; Gareeva, Z.V.; Chen, X.M. Multiferroic Order Parameters in Rhombic Antiferromagnets RCrO3. J. Phys. Condens. Matter 2021, 33, 385801. [Google Scholar] [CrossRef]
- Zhang, B.H.; Liu, X.Q.; Chen, X.M. Review of experimental progress of hybrid improper ferroelectricity in layered perovskite oxides. J. Phys. D Appl. Phys. 2021, 55, 113001. [Google Scholar] [CrossRef]
- Evans, H.A.; Mao, L.; Seshadri, R.; Cheetham, A.K. Layered Double Perovskites. Annu. Rev. Mater. Sci. 2021, 51, 351–380. [Google Scholar] [CrossRef]
- Ruddlesden, S.N.; Popper, P. The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 1958, 11, 54–55. [Google Scholar] [CrossRef] [Green Version]
- Ding, P.; Li, W.; Zhao, H.; Wu, C.; Zhao, L.; Dong, B.; Wang, S. Review on Ruddlesden–Popper perovskites as cathode for solid oxide fuel cells. J. Phys. Mater. 2021, 4, 022002. [Google Scholar] [CrossRef]
- Saw, A.K.; Gupta, S.; Dayal, V. Structural, magneto transport and magnetic properties of Ruddlesden–Popper La2-2xSr1+2xMn2O7 (0.42 ≤ x ≤ 0.52) layered manganites. AIP Adv. 2021, 11, 025331. [Google Scholar] [CrossRef]
- Battle, P.D.; Rosseinsky, M.J. Synthesis, structure, and magnetic properties of n = 2 Ruddlesden–Popper manganates. Curr. Opin. Solid State Mater. Sci. 1999, 4, 163–170. [Google Scholar] [CrossRef]
- Fawcett, I.D.; Sunstrom; Greenblatt, M.; Croft, M.; Ramanujachary, K.V. Structure, Magnetism, and Properties of Ruddlesden−Popper Calcium Manganates Prepared from Citrate Gels. Chem. Mater. 1998, 10, 3643–3651. [Google Scholar] [CrossRef]
- Harris, A.B. Symmetry analysis for the Ruddlesden-Popper systems Ca3Mn2O7 and Ca3Ti2O7. Phys. Rev. B 2011, 84, 064116. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, M.; Greenblatt, M.; Caspi, E.A.N.; Jorgensen, J.D.; Sheptyakov, D.; Toby, B.; Botez, C.E.; Stephens, P.W. Crystal and magnetic structure of the Ca3Mn2O7 Ruddlesden–Popper phase: Neutron and synchrotron x-ray diffraction study. J. Phys. Condens. Matter 2004, 16, 5339–5348. [Google Scholar] [CrossRef]
- Oh, Y.S.; Luo, X.; Huang, F.-T.; Wang, Y.; Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat. Mater. 2015, 14, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Wu, J.W.; Shi, X.X.; Zhao, H.J.; Zhou, H.Y.; Qiu, R.H.; Zhang, W.Q.; Chen, X.M. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti,Mn)2O7 ceramics. Appl. Phys. Lett. 2015, 106, 202903. [Google Scholar] [CrossRef]
- Glazer, A.M. The classification of tilted octahedra in perovskites. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1972, 28, 3384–3392. [Google Scholar] [CrossRef]
- Senn, M.S.; Bristowe, N. A group-theoretical approach to enumerating magnetoelectric and multiferroic couplings in perovskites. Acta Crystallogr. Sect. A Found. Adv. 2018, 74, 308–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, A.T.; Benedek, N.A.; Rondinelli, J.M.; Fennie, C.J. Turning ABO3Antiferroelectrics into Ferroelectrics: Design Rules for Practical Rotation-Driven Ferroelectricity in Double Perovskites and A3B2O7 Ruddlesden-Popper Compounds. Adv. Funct. Mater. 2013, 23, 4810–4820. [Google Scholar] [CrossRef] [Green Version]
- Bousquet, E.; Cano, A. Non-collinear magnetism in multiferroic perovskites. J. Phys. Condens. Matter 2016, 28, 123001. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, N.; Graham, P.J.; Rovillain, P.; O’Brien, J.; Bertinshaw, J.; Yick, S.; Hester, J.; Maljuk, A.; Souptel, D.; Büchner, B.; et al. Reduced Crystal Symmetry as Origin of the Ferroelectric Polarization within the Incommensurate Magnetic Phase of TbMn2O5. arXiv 2021, arXiv:2109.05164. [Google Scholar]
- Mato, J.M.P.; Ribeiro, J.L.; Petricek, V.; Aroyo, M.I. Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases. J. Phys. Condens. Matter 2012, 24, 163201. [Google Scholar] [CrossRef] [Green Version]
- Hatch, D.M.; Stokes, H.T. INVARIANTS: Program for obtaining a list of invariant polynomials of the order-parameter components associated with irreducible representations of a space group. J. Appl. Crystallogr. 2003, 36, 951–952. [Google Scholar] [CrossRef] [Green Version]
- (International Tables for Crystallography) Introduction to the Properties of Tensors. Available online: https://onlinelibrary.wiley.com/iucr/itc/Da/ch1o1v0001/ (accessed on 27 December 2021).
- Gabbasova, Z.; Kuz’min, M.; Zvezdin, A.; Dubenko, I.; Murashov, V.; Rakov, D.; Krynetsky, I. Bi1−xRxFeO3 (R = rare earth): A family of novel magnetoelectrics. Phys. Lett. A 1991, 158, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Palkar, V.R.; John, J.; Pinto, R. Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 2002, 80, 1628–1630. [Google Scholar] [CrossRef]
- Lebeugle, D.; Colson, D.; Forget, A.; Viret, M.; Bonville, P.; Marucco, J.F.; Fusil, S. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 2007, 76, 024116. [Google Scholar] [CrossRef] [Green Version]
- Lebeugle, D.; Colson, D.; Forget, A.; Viret, M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 2007, 91, 022907. [Google Scholar] [CrossRef] [Green Version]
- Teague, J.R.; Gerson, R.; James, W. Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 1970, 8, 1073–1074. [Google Scholar] [CrossRef]
- Wang, Y.P.; Yuan, G.L.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G. Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO3 ceramic. J. Phys. D: Appl. Phys. 2006, 39, 2019–2023. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wuttig, M.; Ramesh, R.; Wang, N.; Ruette, B.; Pyatakov, A.P.; Zvezdin, A.K.; Viehland, D. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 2004, 84, 5261–5263. [Google Scholar] [CrossRef] [Green Version]
- Dixit, H.; Beekman, C.; Schlepütz, C.M.; Siemons, W.; Yang, Y.; Senabulya, N.; Clarke, R.; Chi, M.; Christen, H.M.; Cooper, V.R. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films. Adv. Sci. 2015, 2, 1500041. [Google Scholar] [CrossRef] [PubMed]
- Sando, D.; Agbelele, A.; Rahmedov, D.; Liu, J.; Rovillain, P.; Toulouse, C.; Infante, I.; Pyatakov, A.P.; Fusil, S.; Jacquet, E.; et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 2013, 12, 641–646. [Google Scholar] [CrossRef]
- Resta, R.; Vanderbilt, D. Theory of Polarization: A Modern Approach. In Physics of Ferroelectrics: A Modern Perspective; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 31–68. [Google Scholar] [CrossRef] [Green Version]
- Spaldin, N.A. A beginner’s guide to the modern theory of polarization. J. Solid State Chem. 2012, 195, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Gareeva, Z.; Diéguez, O.; Iñiguez, J.; Zvezdin, A.K. Complex domain walls in BiFeO3. Phys. Rev. B 2015, 91, 060404. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; Pyatakov, A.P. On the Problem of Coexistence of the Weak Ferromagnetism and the Spin Flexoelectricity in Multiferroic Bismuth Ferrite. EPL Europhys. Lett. 2012, 99, 57003. [Google Scholar] [CrossRef]
- Fishman, R.S.; Rõõm, T.; de Sousa, R. Normal modes of a spin cycloid or helix. Phys. Rev. B 2019, 99, 064414. [Google Scholar] [CrossRef] [Green Version]
- Sosnowska, I.; Neumaier, T.P.; Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 1982, 15, 4835–4846. [Google Scholar] [CrossRef]
- Kadomtseva, A.M.; Zvezdin, A.K.; Popov, Y.F.; Pyatakov, A.P.; Vorob’Ev, G.P. Space-time parity violation and magnetoelectric interactions in antiferromagnets. JETP Lett. 2004, 79, 571–581. [Google Scholar] [CrossRef]
- Kadomtseva, A.M.; Popov, Y.F.; Pyatakov, A.P.; Vorob’Ev, G.P.; Zvezdin, A.K.; Viehland, D. Phase transitions in multiferroic BiFeO3crystals, thin-layers, and ceramics: Enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Phase Transitions 2006, 79, 1019–1042. [Google Scholar] [CrossRef] [Green Version]
- Popov, Y.F.; Kadomtseva, A.M.; Vorob’Ev, G.P.; Zvezdin, A.K. Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeO3 in a strong magnetic field. Ferroelectrics 1994, 162, 135–140. [Google Scholar] [CrossRef]
- Pyatakov, A.P.; Zvezdin, A.K. Magnetoelectric and multiferroic media. Phys.-Uspekhi 2012, 55, 557–581. [Google Scholar] [CrossRef]
- Murashov, V.A.; Rakov, D.N.; Ehkonomov, N.A. Quadratic Magnetoelectric Effect in Monocrystalline (Bi,La)FeO3. Fiz. Tverd. Tela 1990, 32, 2156–2158. [Google Scholar]
- Sosnowska, I.; Przeniosło, R.; Fischer, P.; Murashov, V. Neutron diffraction studies of the crystal and magnetic structures of BiFeO3 and Bi0.93La0.07FeO3. J. Magn. Magn. Mater. 1996, 160, 384–385. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Zhu, X.L.; Gareeva, Z.V.; Zvezdin, A.K.; Chen, X.M. The involvement of Pna21 phase in the multiferroic characteristics of La/Lu co-substituted BiFeO3 ceramics. Appl. Phys. Lett. 2021, 119, 112901. [Google Scholar] [CrossRef]
- Belov, K.P.; Zvezdin, A.K.; Kadomtseva, A.M.; Levitin, R.Z. Spin-reorientation transitions in rare-earth magnets. Sov. Phys. Uspekhi 1976, 19, 574. [Google Scholar] [CrossRef]
- Turov, E.A. Can the magnetoelectric effect coexist with weak piezomagnetism and ferromagnetism? Phys.-Uspekhi 1994, 37, 303–310. [Google Scholar] [CrossRef]
- Izyumov, Y.A.; Naish, V.E. Symmetry Analysis in Neutron Diffraction Studies of Magnetic Structures: 1. A Phase Transition Concept to Describe Magnetic Structures in Crystals. J. Magn. Magn. Mater. 1979, 12, 239–248. [Google Scholar] [CrossRef]
- Tassel, C.; Goto, Y.; Kuno, Y.; Hester, J.; Green, M.; Kobayashi, Y.; Kageyama, H. Direct Synthesis of Chromium Perovskite Oxyhydride with a High Magnetic-Transition Temperature. Angew. Chem. 2014, 126, 10545–10548. [Google Scholar] [CrossRef]
- Singh, K.D.; Singh, F.; Choudhary, R.J.; Kumar, R. Consequences of R3+ Cationic Radii on the Dielectric and Magnetic Behavior of RCrO3 Perovskites. Appl. Phys. A 2020, 126, 148. [Google Scholar] [CrossRef]
- Sanina, V.A.; Khannanov, B.K.; Golovenchits, E.I.; Shcheglov, M.P. Electric Polarization in ErCrO3 Induced by Restricted Polar Domains. Phys. Solid State 2019, 61, 370–378. [Google Scholar] [CrossRef] [Green Version]
- Rajeswaran, B.; Khomskii, D.I.; Zvezdin, A.K.; Rao, C.N.R.; Sundaresan, A. Field-Induced Polar Order at the N\’eel Temperature of Chromium in Rare-Earth Orthochromites: Interplay of Rare-Earth and Cr Magnetism. Phys. Rev. B 2012, 86, 214409. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, Y.; Furukawa, N.; Sakai, H.; Taguchi, Y.; Arima, T.; Tokura, Y. Composite Domain Walls in a Multiferroic Perovskite Ferrite. Nat. Mater. 2009, 8, 558–562. [Google Scholar] [CrossRef]
- Sahlot, P.; Jana, A.; Awasthi, A.M. Exchange Bias in Multiferroic Ca3Mn2O7 Effected by Dzyaloshinskii-Moriya Interaction. AIP Conf. Proc. 2018, 1942, 130009. [Google Scholar] [CrossRef]
- Jung, W.-H. Weak Ferromagnetism of n = 2 Ruddlesden: Popper Ca3Mn2O7 System. J. Mater. Sci. Lett. 2000, 19, 2037–2038. [Google Scholar] [CrossRef]
- Elcombe, M.M.; Kisi, E.H.; Hawkins, K.D.; White, T.J.; Goodman, P.; Matheson, S. Structure Determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a Refinement of Sr3Ti2O7. Acta Crystallogr. B 1991, 47, 305–314. [Google Scholar] [CrossRef]
- Guiblin, N.; Grebille, D.; Leligny, H.; Martin, C. Ca3Mn2O7. Acta Crystallogr. C 2002, 58, i3–i5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendersky, L.A.; Chen, R.; Fawcett, I.D.; Greenblatt, M. TEM Study of the Electron-Doped Layered La2−2xCa1+2xMn2O7: Orthorhombic Phase in the 0.8. J. Solid State Chem. 2001, 157, 309–323. [Google Scholar] [CrossRef]
Гi | 2x | 2y | 2z | Order Parameters, and Magnetic and Electric Fields | |||
---|---|---|---|---|---|---|---|
Г1 | 1 | 1 | 1 | 1 | Ly | ||
Г2 | 1 | 1 | −1 | −1 | Mx | Lz | Hx |
Г3 | 1 | −1 | 1 | −1 | My | Hy | |
Г4 | 1 | −1 | −1 | 1 | Mz | Lx | Hz |
Г5 | −1 | 1 | 1 | 1 | ly | ||
Г6 | −1 | 1 | −1 | −1 | lx | Pz | Ez |
Г7 | −1 | −1 | 1 | −1 | Py | Ey | |
Г8 | −1 | −1 | −1 | 1 | lz | Px | Ex |
Гi | 2x | 2y | 2z | Magnetic OPs, Magnetic Field | Structural OPs, Electric Field | ||
---|---|---|---|---|---|---|---|
4b | 4c | ||||||
Г1 | 1 | 1 | 1 | 1 | cy | ||
Г2 | 1 | 1 | −1 | −1 | |||
Г3 | 1 | −1 | 1 | −1 | |||
Г4 | 1 | −1 | −1 | 1 | fy | ||
Г5 | −1 | 1 | 1 | 1 | , Dz | ||
Г6 | −1 | 1 | −1 | −1 | ay | ||
Г7 | −1 | −1 | 1 | −1 | ,Dx | ||
Г8 | −1 | −1 | −1 | 1 | gy | ,Dy |
GF | 1 | 2 | 3 | 4 |
---|---|---|---|---|
2 | 1 | 4 | 3 | |
4z | 1 | 2 | 3 | 4 |
2z | 3 | 4 | 1 | 2 |
2y | 2 | 1 | 4 | 3 |
GF | F | A | G | C |
---|---|---|---|---|
F | −A | −G | C | |
4z | F | A | G | C |
2z | F | −A | G | −C |
2y | F | −A | −G | C |
Гi | Basic Vectors F, G, P | |||||
---|---|---|---|---|---|---|
Г1 | 1 | 1 | 1 | 1 | 1 | |
Г2 | 1 | 1 | 1 | −1 | 1 | Fz |
Г3 | 1 | −1 | 1 | −1 | 1 | |
Г4 | 1 | −1 | 1 | 1 | 1 | |
Г5 | ||||||
Г6 | 1 | 1 | 1 | 1 | −1 | Gz |
Г7 | 1 | 1 | 1 | −1 | −1 | Pz |
Г8 | 1 | −1 | 1 | −1 | −1 | |
Г9 | 1 | −1 | 1 | 1 | −1 | |
Г10 | ||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gareeva, Z.; Zvezdin, A.; Zvezdin, K.; Chen, X. Symmetry Analysis of Magnetoelectric Effects in Perovskite-Based Multiferroics. Materials 2022, 15, 574. https://doi.org/10.3390/ma15020574
Gareeva Z, Zvezdin A, Zvezdin K, Chen X. Symmetry Analysis of Magnetoelectric Effects in Perovskite-Based Multiferroics. Materials. 2022; 15(2):574. https://doi.org/10.3390/ma15020574
Chicago/Turabian StyleGareeva, Zukhra, Anatoly Zvezdin, Konstantin Zvezdin, and Xiangming Chen. 2022. "Symmetry Analysis of Magnetoelectric Effects in Perovskite-Based Multiferroics" Materials 15, no. 2: 574. https://doi.org/10.3390/ma15020574
APA StyleGareeva, Z., Zvezdin, A., Zvezdin, K., & Chen, X. (2022). Symmetry Analysis of Magnetoelectric Effects in Perovskite-Based Multiferroics. Materials, 15(2), 574. https://doi.org/10.3390/ma15020574