Flexible Thermoelectric Generator Based on Polycrystalline SiGe Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akinaga, H. Recent advances and future prospects in energy harvesting technologies. Jpn. J. Appl. Phys. 2020, 59, 110201. [Google Scholar] [CrossRef]
- Gholikhani, M.; Roshani, H.; Dessouky, S.; Papagiannakis, A.T. A critical review of roadway energy harvesting technologies. Appl. Energy 2020, 261, 114388. [Google Scholar] [CrossRef]
- Hasan, M.N.; Sahlan, S.; Osman, K.; Mohamed Ali, M.S. Energy Harvesters for Wearable Electronics and Biomedical Devices. Adv. Mater. Technol. 2021, 6, 2000771. [Google Scholar] [CrossRef]
- Hesham, R.; Soltan, A.; Madian, A. Energy Harvesting Schemes for Wearable Devices. AEU Int. J. Electron. Commun. 2021, 138, 153888. [Google Scholar] [CrossRef]
- Petsagkourakis, I.; Tybrandt, K.; Crispin, X.; Ohkubo, I.; Satoh, N.; Mori, T. Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 2018, 19, 836–862. [Google Scholar] [CrossRef] [PubMed]
- Bahk, J.-H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Bharti, M.; Singh, A.; Samanta, S.; Aswal, D.K. Conductive polymers for thermoelectric power generation. Prog. Mater. Sci. 2018, 93, 270–310. [Google Scholar] [CrossRef]
- Lin, Z.; Hollar, C.; Kang, J.S.; Yin, A.; Wang, Y.; Shiu, H.-Y.; Huang, Y.; Hu, Y.; Zhang, Y.; Duan, X. A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film. Adv. Mater. 2017, 29, 1606662. [Google Scholar] [CrossRef]
- Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H.M.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y.Q.; Grundmann, M. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nat. Commun. 2017, 8, 16076. [Google Scholar] [CrossRef]
- Liang, J.; Wang, T.; Qiu, P.; Yang, S.; Ming, C.; Chen, H.; Song, Q.; Zhao, K.; Wei, T.-R.; Ren, D.; et al. Flexible thermoelectrics: From silver chalcogenides to full-inorganic devices. Energy Environ. Sci. 2019, 12, 2983–2990. [Google Scholar] [CrossRef]
- Paul, B.; Björk, E.M.; Kumar, A.; Lu, J.; Eklund, P. Nanoporous Ca 3 Co 4 O 9 Thin Films for Transferable Thermoelectrics. ACS Appl. Energy Mater. 2018, 1, 2261–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, T.G.; Kim, J.; Kim, J.; Shin, H.; Tiwari, A.P.; Song, J.Y.; Jeon, S. Flexible thermoelectric films with high power factor made of non-oxidized graphene flakes. 2D Mater. 2019, 6, 045019. [Google Scholar] [CrossRef]
- Kaiwa, N.; Yamazaki, J.; Matsumoto, T.; Saito, M.; Yamaguchi, S.; Yamamoto, A. Thermoelectric properties and a device based on n-InSb and p-InAs. Appl. Phys. Lett. 2007, 90, 052107. [Google Scholar] [CrossRef]
- Bahk, J.-H.; Bian, Z.; Zebarjadi, M.; Zide, J.M.O.; Lu, H.; Xu, D.; Feser, J.P.; Zeng, G.; Majumdar, A.; Gossard, A.C.; et al. Thermoelectric figure of merit of (In0.53Ga0.47As)0.8(In0.52Al0.48As)0.2 III-V semiconductor alloys. Phys. Rev. B 2010, 81, 235209. [Google Scholar] [CrossRef]
- Dismukes, J.P.; Ekstrom, L.; Steigmeier, E.F.; Kudman, I.; Beers, D.S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 K. J. Appl. Phys. 1964, 35, 2899–2907. [Google Scholar] [CrossRef]
- Vining, C.B. A model for the high-temperature transport properties of heavily doped n -type silicon-germanium alloys. J. Appl. Phys. 1991, 69, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R.W.; Cuff, D.C.; Tang, M.Y.; Dresselhaus, M.S.; et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670–4674. [Google Scholar] [CrossRef]
- Xie, K.; Mork, K.; Held, J.T.; Mkhoyan, K.A.; Kortshagen, U.; Gupta, M.C. Quasi continuous wave laser sintering of Si-Ge nanoparticles for thermoelectrics. J. Appl. Phys. 2018, 123, 094301. [Google Scholar] [CrossRef] [Green Version]
- Tajima, K.; Shin, W.; Nishibori, M.; Murayama, N.; Itoh, T.; Izu, N.; Matsubara, I. B- and P-Doped Si0.8Ge0.2 Thin Film Deposited by Helicon Sputtering for the Micro-Thermoelectric Gas Sensor. Key Eng. Mater. 2006, 320, 99–102. [Google Scholar] [CrossRef]
- Perez-Taborda, J.A.; Muñoz Rojo, M.; Maiz, J.; Neophytou, N.; Martin-Gonzalez, M. Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications. Sci. Rep. 2016, 6, 32778. [Google Scholar] [CrossRef] [Green Version]
- Takashiri, M.; Borca-Tasciuc, T.; Jacquot, A.; Miyazaki, K.; Chen, G. Structure and thermoelectric properties of boron doped nanocrystalline Si0.8Ge0.2 thin film. J. Appl. Phys. 2006, 100, 054315. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fiorini, P.; Leonov, V.; Van Hoof, C. Characterization and optimization of polycrystalline Si 70% Ge 30% for surface micromachined thermopiles in human body applications. J. Micromech. Microeng. 2009, 19, 094011. [Google Scholar] [CrossRef]
- Cheaito, R.; Duda, J.C.; Beechem, T.E.; Hattar, K.; Ihlefeld, J.F.; Medlin, D.L.; Rodriguez, M.A.; Campion, M.J.; Piekos, E.S.; Hopkins, P.E. Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films. Phys. Rev. Lett. 2012, 109, 195901. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Guo, R.; Dai, W.; Huang, B. Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries. Nanoscale 2015, 7, 7331–7339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nozariasbmarz, A.; Tahmasbi Rad, A.; Zamanipour, Z.; Krasinski, J.S.; Tayebi, L.; Vashaee, D. Enhancement of thermoelectric power factor of silicon germanium films grown by electrophoresis deposition. Scr. Mater. 2013, 69, 549–552. [Google Scholar] [CrossRef]
- Takiguchi, H.; Aono, M.; Okamoto, Y. Nano Structural and Thermoelectric Properties of SiGeAu Thin Films. Jpn. J. Appl. Phys. 2011, 50, 041301. [Google Scholar] [CrossRef]
- Peng, Y.; Miao, L.; Gao, J.; Liu, C.; Kurosawa, M.; Nakatsuka, O.; Zaima, S. Realizing High Thermoelectric Performance at Ambient Temperature by Ternary Alloying in Polycrystalline Si1−x−yGexSny Thin Films with Boron Ion Implantation. Sci. Rep. 2019, 9, 14342. [Google Scholar] [CrossRef]
- Ozawa, T.; Imajo, T.; Suemasu, T.; Toko, K. High thermoelectric power factors in polycrystalline germanium thin films. Appl. Phys. Lett. 2021, 119, 132101. [Google Scholar] [CrossRef]
- Wang, Z.; Jeurgens, L.P.H.; Wang, J.Y.; Mittemeijer, E.J. Fundamentals of Metal-induced Crystallization of Amorphous Semiconductors. Adv. Eng. Mater. 2009, 11, 131–135. [Google Scholar] [CrossRef]
- Toko, K.; Suemasu, T. Metal-induced layer exchange of group IV materials. J. Phys. D Appl. Phys. 2020, 53, 373002. [Google Scholar] [CrossRef]
- Kusano, K.; Yamamoto, A.; Nakata, M.; Suemasu, T.; Toko, K. Thermoelectric Inorganic SiGe Film Synthesized on Flexible Plastic Substrate. ACS Appl. Energy Mater. 2018, 1, 5280. [Google Scholar] [CrossRef]
- Tsuji, M.; Imajo, T.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K. Improved thermoelectric performance of flexible p-type SiGe films by B-doped Al-induced layer exchange. J. Phys. D Appl. Phys. 2020, 53, 075105. [Google Scholar] [CrossRef]
- Kusano, K.; Tsuji, M.; Suemasu, T.; Toko, K. 80 °C synthesis of thermoelectric nanocrystalline Ge film on flexible plastic substrate by Zn-induced layer exchange. Appl. Phys. Express 2019, 12, 055501. [Google Scholar] [CrossRef]
- Tsuji, M.; Kusano, K.; Suemasu, T.; Toko, K. Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics. Appl. Phys. Lett. 2020, 116, 182105. [Google Scholar] [CrossRef]
- Tsuji, M.; Murata, M.; Yamamoto, A.; Suemasu, T.; Toko, K. Thin-film thermoelectric generator based on polycrystalline SiGe formed by Ag-induced layer exchange. Appl. Phys. Lett. 2020, 117, 162103. [Google Scholar] [CrossRef]
- Ozawa, T.; Kusano, K.; Murata, M.; Yamamoto, A.; Suemasu, T.; Toko, K. Thickness-dependent thermoelectric properties of Si 1− x Ge x films formed by Al-induced layer exchange. J. Appl. Phys. 2021, 129, 015303. [Google Scholar] [CrossRef]
- Mooney, P.M.; Dacol, F.H.; Tsang, J.C.; Chu, J.O. Raman scattering analysis of relaxed GexSi1−x alloy layers. Appl. Phys. Lett. 1993, 62, 2069. [Google Scholar] [CrossRef]
- Pezzoli, F.; Martinelli, L.; Grilli, E.; Guzzi, M.; Sanguinetti, S.; Bollani, M.; Chrastina, H.D.; Isella, G.; von Känel, H.; Wintersberger, E.; et al. Raman spectroscopy of Si1−xGex epilayers. Mater. Sci. Eng. B 2005, 124–125, 127–131. [Google Scholar] [CrossRef]
- Oya, N.; Toko, K.; Saitoh, N.; Yoshizawa, N.; Suemasu, T. Direct synthesis of highly textured Ge on flexible polyimide films by metal-induced crystallization. Appl. Phys. Lett. 2014, 104, 262107. [Google Scholar] [CrossRef] [Green Version]
- Mizoguchi, T.; Imajo, T.; Chen, J.; Sekiguchi, T.; Suemasu, T.; Toko, K. Composition dependent properties of p- and n-type polycrystalline group-IV alloy thin films. J. Alloys Compd. 2021, 887, 161306. [Google Scholar] [CrossRef]
- Imajo, T.; Moto, K.; Yoshimine, R.; Suemasu, T.; Toko, K. High hole mobility (≥500 cm2 V−1 s−1) polycrystalline Ge films on GeO2-coated glass and plastic substrates. Appl. Phys. Express 2019, 12, 015508. [Google Scholar] [CrossRef] [Green Version]
- Toko, K.; Yoshimine, R.; Moto, K.; Suemasu, T. High-hole mobility polycrystalline Ge on an insulator formed by controlling precursor atomic density for solid-phase crystallization. Sci. Rep. 2017, 7, 16981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M.; Moto, K.; Nishida, T.; Suemasu, T.; Toko, K. High-electron-mobility (370 cm2/Vs) polycrystalline Ge on an insulator formed by As-doped solid-phase crystallization. Sci. Rep. 2019, 9, 16558. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozawa, T.; Murata, M.; Suemasu, T.; Toko, K. Flexible Thermoelectric Generator Based on Polycrystalline SiGe Thin Films. Materials 2022, 15, 608. https://doi.org/10.3390/ma15020608
Ozawa T, Murata M, Suemasu T, Toko K. Flexible Thermoelectric Generator Based on Polycrystalline SiGe Thin Films. Materials. 2022; 15(2):608. https://doi.org/10.3390/ma15020608
Chicago/Turabian StyleOzawa, Tomoki, Masayuki Murata, Takashi Suemasu, and Kaoru Toko. 2022. "Flexible Thermoelectric Generator Based on Polycrystalline SiGe Thin Films" Materials 15, no. 2: 608. https://doi.org/10.3390/ma15020608
APA StyleOzawa, T., Murata, M., Suemasu, T., & Toko, K. (2022). Flexible Thermoelectric Generator Based on Polycrystalline SiGe Thin Films. Materials, 15(2), 608. https://doi.org/10.3390/ma15020608