Effect of Tin Grain Orientation on Electromigration-Induced Dissolution of Ni Metallization in SnAg Solder Joints
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chao, B.H.-L.; Zhang, X.; Chae, S.-H.; Ho, P.S. Recent advances on kinetic analysis of electromigration enhanced intermetallic growth and damage formation in Pb-free solder joints. Microelectron. Reliab. 2009, 49, 253–263. [Google Scholar] [CrossRef]
- Chen, C.; Liang, S. Electromigration issues in lead-free solder joints. Lead-Free. Electron. Solder. 2006, 18, 259–268. [Google Scholar] [CrossRef]
- Gan, H.; Choi, W.; Xu, G.; Tu, K.-N. Electromigration in solder joints and solder lines. JOM 2002, 54, 34–37. [Google Scholar] [CrossRef]
- Lin, Y.; Tsai, C.; Hu, Y.; Lin, Y.; Kao, C. Electromigration-induced failure in flip-chip solder joints. J. Electron. Mater. 2005, 34, 27–33. [Google Scholar] [CrossRef]
- Yoon, S.W.; Shiozaki, K.; Yasuda, S.; Glover, M.D. Highly reliable nickel-tin transient liquid phase bonding technology for high temperature operational power electronics in electrified vehicles. In Proceedings of the 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 478–482. [Google Scholar]
- Lee, B.-S.; Hyun, S.-K.; Yoon, J.-W. Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. Mater. Electron. 2017, 28, 7827–7833. [Google Scholar] [CrossRef]
- Tollefsen, T.A.; Larsson, A.; Løvvik, O.M.; Aasmundtveit, K.E. High temperature interconnect and die attach technology: Au–Sn SLID bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 904–914. [Google Scholar] [CrossRef]
- Kang, S.; Rai, R.; Purushothaman, S. Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders. J. Electron. Mater. 1996, 25, 1113–1120. [Google Scholar] [CrossRef]
- Yeh, D.; Huntington, H. Extreme fast-diffusion system: Nickel in single-crystal tin. Phys. Rev. Lett. 1984, 53, 1469. [Google Scholar] [CrossRef]
- Shen, Y.-A.; Ouyang, F.-Y.; Chen, C. Effect of Sn grain orientation on growth of Cu-Sn intermetallic compounds during thermomigration in Cu-Sn2. 3Ag-Ni microbumps. Mater. Lett. 2019, 236, 190–193. [Google Scholar] [CrossRef]
- Hsu, W.-N.; Ouyang, F.-Y. Effects of anisotropic β-Sn alloys on Cu diffusion under a temperature gradient. Acta Mater. 2014, 81, 141–150. [Google Scholar] [CrossRef]
- Qiao, Y.; Ma, H.; Yu, F.; Zhao, N. Quasi-in-situ observation on diffusion anisotropy dominated asymmetrical growth of Cu-Sn IMCs under temperature gradient. Acta Mater. 2021, 217, 117168. [Google Scholar] [CrossRef]
- Sun, L.; Chen, M.-H.; Zhang, L. Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloy. Compd. 2019, 786, 677–687. [Google Scholar] [CrossRef]
- Mo, C.-C.; Tran, D.-P.; Juang, J.-Y.; Chen, C. Effect of Intermetallic Compound Bridging on the Cracking Resistance of Sn2. 3Ag Microbumps with Different UBM Structures under Thermal Cycling. Metals 2021, 11, 1065. [Google Scholar] [CrossRef]
- Yang, W.; Felton, L.E.; Messler, R.W. The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints. J. Electron. Mater. 1995, 24, 1465–1472. [Google Scholar] [CrossRef]
- Choi, W.; Yeh, E.; Tu, K.-N. Mean-time-to-failure study of flip chip solder joints on Cu/Ni (V)/Al thin-film under-bump-metallization. J. Appl. Phys. 2003, 94, 5665–5671. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, T.; Su, P.; Hong, S.; Korhonen, M.; Li, C.-Y. Reactions of lead-free solders with CuNi metallizations. J. Electron. Mater. 2000, 29, 1194–1199. [Google Scholar] [CrossRef]
- Zeng, K.; Tu, K.-N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. R Rep. 2002, 38, 55–105. [Google Scholar] [CrossRef]
- Tu, K.-N.; Ku, F.; Lee, T. Morphological stability of solder reaction products in flip chip technology. J. Electron. Mater. 2001, 30, 1129–1132. [Google Scholar] [CrossRef]
- Kim, H.; Tu, K.-N. Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Phys. Rev. B 1996, 53, 16027. [Google Scholar] [CrossRef]
- Okamoto, H.; Massalski, T. Binary Alloy Phase Diagrams; ASM International: Novelty, OH, USA, 1990; p. 12. [Google Scholar]
- Chuang, H.; Yu, J.; Kuo, M.; Tong, H.; Kao, C. Elimination of voids in reactions between Ni and Sn: A novel effect of silver. Scr. Mater. 2012, 66, 171–174. [Google Scholar] [CrossRef]
- Ji, H.; Ma, Y.; Li, M.; Wang, C. Effect of the silver content of SnAgCu solder on the interfacial reaction and on the reliability of angle joints fabricated by laser-jet soldering. J. Electron. Mater. 2015, 44, 733–743. [Google Scholar] [CrossRef]
- Yang, T.; Yu, J.; Shih, W.; Hsueh, C.; Kao, C. Effects of silver addition on Cu–Sn microjoints for chip-stacking applications. J. Alloy. Compd. 2014, 605, 193–198. [Google Scholar] [CrossRef]
- Che, F.; Luan, J.; Baraton, X. Effect of silver content and nickel dopant on mechanical properties of Sn-Ag-based solders. In Proceedings of the 2008 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 485–490. [Google Scholar]
- Li, Y.; Chan, Y. Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi–Ag composite solders. J. Alloy. Compd. 2015, 645, 566–576. [Google Scholar] [CrossRef]
- Terashima, S.; Kariya, Y.; Hosoi, T.; Tanaka, M. Effect of silver content on thermal fatigue life of Sn-xAg-0.5 Cu flip-chip interconnects. J. Electron. Mater. 2003, 32, 1527–1533. [Google Scholar] [CrossRef]
- Otiaba, K.C.; Bhatti, R.; Ekere, N.; Mallik, S.; Ekpu, M. Finite element analysis of the effect of silver content for Sn–Ag–Cu alloy compositions on thermal cycling reliability of solder die attach. Eng. Fail. Anal. 2013, 28, 192–207. [Google Scholar] [CrossRef]
- Kariya, Y.; Hosoi, T.; Terashima, S.; Tanaka, M.; Otsuka, M. Effect of silver content on the shear fatigue properties of Sn-Ag-Cu flip-chip interconnects. J. Electron. Mater. 2004, 33, 321–328. [Google Scholar] [CrossRef]
- Yang, R.-W.; Chang, Y.-W.; Sung, W.-C.; Chen, C. Precipitation of large Ag3Sn intermetallic compounds in SnAg2. 5 microbumps after multiple reflows in 3D-IC packaging. Mater. Chem. Phys. 2012, 134, 340–344. [Google Scholar] [CrossRef]
- Jang, J.; Frear, D.; Lee, T.; Tu, K.-N. Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization. J. Appl. Phys. 2000, 88, 6359–6363. [Google Scholar] [CrossRef]
- Reid, M.; Punch, J.; Collins, M.; Ryan, C. Effect of Ag content on the microstructure of Sn-Ag-Cu based solder alloys. Solder. Surf. Mt. Technol. 2008, 20, 3–8. [Google Scholar] [CrossRef]
- Yu, J.; Yang, C.; Lin, Y.; Hsueh, C.; Kao, C. Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications. J. Alloy. Compd. 2015, 629, 16–21. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yang, J.; Huang, J.; Chen, S.; Ye, Z. Microstructure, properties, and formation mechanisms of tungsten/steel hot isostatic pressing diffusion bonding joint utilizing a Ni-Si-B interlayer. J. Mater. Process. Technol. 2022, 299, 117303. [Google Scholar] [CrossRef]
- He, H.; Huang, S.; Xiao, Y.; Goodall, R. Diffusion reaction-induced microstructure and strength evolution of Cu joints bonded with Sn-based solder containing Ni-foam. Mater. Lett. 2020, 281, 128642. [Google Scholar] [CrossRef]
- Qiao, Y.; Ma, H.; Zhao, N. Diffusion anisotropy induced uneven regional growth of Cu6Sn5 IMC in Cu/SAC305/Cu micro solder joints under temperature gradient. J. Alloy. Compd. 2021, 886, 161221. [Google Scholar] [CrossRef]
- Shao, T.; Liang, S.-W.; Lin, T.; Chen, C. Three-dimensional simulation on current-density distribution in flip-chip solder joints under electric current stressing. J. Appl. Phys. 2005, 98, 044509. [Google Scholar] [CrossRef]
- Lu, M.; Shih, D.-Y.; Lauro, P.; Goldsmith, C.; Henderson, D.W. Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders. Appl. Phys. Lett. 2008, 92, 211909. [Google Scholar] [CrossRef]
Sample No. | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Kelvin Position | Left | Right | Left | Right | Left | Right | Left | Right |
Time (h) | 14.23 | 12.91 | 13.34 | 21.10 | ||||
Rate (µm/h) | 0.137 | 0.176 | 0.007 | 0.185 | 0.185 | 0.003 | 0.144 | 0.003 |
α-angle | 34 | 20 | 79 | 16 | 16 | 83 | 32 | 83 |
H (exp., µm) | 1.6 | 2 | 0.04 | 2 | 2 | 0.01 | 2 | 0.02 |
H (cal., µm) | 1.96 | 2.51 | 0.09 | 2.38 | 2.46 | 0.04 | 3.03 | 0.06 |
Sample No. | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Kelvin Position | Left | Right | Left | Right | Left | Right | Left | Right |
Time (h) | 212.41 | 252.66 | 21.16 | 135.52 | ||||
Rate (µm/h) | 0.024 | 0.009 | 0.001 | 0.030 | 0.027 | 0.038 | 0.038 | 0.005 |
α-angle | 38 | 61 | 79 | 29 | 34 | 11 | 11 | 70 |
H (exp., µm) | 2 | 0.64 | 0.14 | 2 | 0.94 | 2 | 2 | 0.3 |
H (cal., µm) | 5.24 | 1.98 | 0.37 | 7.68 | 0.58 | 0.81 | 5.19 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, P.-N.; Lee, D.-L.; Tran, D.-P.; Shie, K.-C.; Tsou, N.-T.; Chen, C. Effect of Tin Grain Orientation on Electromigration-Induced Dissolution of Ni Metallization in SnAg Solder Joints. Materials 2022, 15, 7115. https://doi.org/10.3390/ma15207115
Hsu P-N, Lee D-L, Tran D-P, Shie K-C, Tsou N-T, Chen C. Effect of Tin Grain Orientation on Electromigration-Induced Dissolution of Ni Metallization in SnAg Solder Joints. Materials. 2022; 15(20):7115. https://doi.org/10.3390/ma15207115
Chicago/Turabian StyleHsu, Po-Ning, Dai-Lung Lee, Dinh-Phuc Tran, Kai-Cheng Shie, Nien-Ti Tsou, and Chih Chen. 2022. "Effect of Tin Grain Orientation on Electromigration-Induced Dissolution of Ni Metallization in SnAg Solder Joints" Materials 15, no. 20: 7115. https://doi.org/10.3390/ma15207115
APA StyleHsu, P. -N., Lee, D. -L., Tran, D. -P., Shie, K. -C., Tsou, N. -T., & Chen, C. (2022). Effect of Tin Grain Orientation on Electromigration-Induced Dissolution of Ni Metallization in SnAg Solder Joints. Materials, 15(20), 7115. https://doi.org/10.3390/ma15207115