Changes in the Laser-Processed Ti6Al4V Titanium Alloy Surface Observed by Using Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalisation
2.3. Morphology of Samples
2.4. Contact Angle Measurements
2.5. Raman Spectroscopy Measurements
3. Results and Discussion
3.1. Morphology of Samples
3.2. Hydrophilic-Lipophilic Nature of Samples
3.3. Raman Spectroscopy Study
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lutjering, G.; Williams, J.C. Titanium; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 3-540-42990-5. [Google Scholar]
- Sunny, M.C.; Sharma, C.P. Titanium-Protein Interaction: Changes with Oxide Layer Thickness. J. Biomater. Appl. 1991, 6, 89–98. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Dong, H.; Sun, Y.; Bell, T. Enhanced corrosion resistance of duplex coatings. Surf. Coat. Tech. 1997, 90, 91–101. [Google Scholar] [CrossRef]
- Sonoda, T.; Kato, M. Effects of discharge voltage on Ti-O film formation on Ti-6Al-4V alloy by reactive DC sputtering. Thin Solid Films 1997, 303, 196–199. [Google Scholar] [CrossRef]
- Dong, H.; Bell, T. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear 2000, 238, 131–137. [Google Scholar] [CrossRef]
- Leng, Y.X.; Yang, P.; Chen, J.Y.; Sun, H.; Wang, J.; Wang, G.J.; Huang, N.; Tian, X.B.; Chu, P.K. Fabrication of Ti–O/Ti–N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation. Surf. Coat. Tech. 2001, 138, 296–300. [Google Scholar] [CrossRef]
- Fridrici, V.; Fouvry, S.; Kapsa, P. Effect of shot peening on the fretting wear of Ti–6Al–4V. Wear 2001, 250, 642–649. [Google Scholar] [CrossRef]
- Dudek, M.; Fouvry, S.; Wendler, B.; Kapsa, P.; Liskiewicz, T. The effect of diffusion treatments in a glow-discharge plasma in Ar+O2 atmosphere on friction and wear of Ti-6Al-4V alloy. Vacuum 2003, 70, 187–191. [Google Scholar] [CrossRef]
- Leng, Y.X.; Chen, J.Y.; Yang, P.; Sun, H.; Huang, N. Structure and properties of passivating titanium oxide films fabricated by DC plasma oxidation. Surf. Coat. Tech. 2003, 166, 176–182. [Google Scholar] [CrossRef]
- Ta, D.V.; Dunn, A.; Wasley, T.J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Connaughton, C.; Shephard, J.D. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl. Surf. Sci. 2015, 357, 248–254. [Google Scholar] [CrossRef]
- Ta, V.D.; Dunn, A.; Wasley, T.J.; Li, J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Esenturk, E.; Connaughton, C.; Shephard, J.D. Laser textured surface gradients. Appl. Surf. Sci. 2016, 371, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Fraczyk, J.; Rosowski, A.; Kolesinska, B.; Koperkiewicz, A.; Sobczyk-Guzenda, A.; Kaminski, Z.J.; Dudek, M. Orthogonal Functionalization of Nanodiamond Particles after Laser Modification and Treatment with Aromatic Amine Derivatives. Nanomaterials 2018, 8, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudek, M.; Rosowski, A.; Kozanecki, M.; Jaszczak, M.; Szymanski, W.; Sharp, M.; Karczemska, A. Microstructures Manufactured in Diamond by Use of Laser Micromachining. Materials 2020, 13, 1199. [Google Scholar] [CrossRef] [Green Version]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, G.; Ye, J.; Chi, Y.; Zhao, Z.; Wang, Z.; Xia, G.; Du, X.; Tian, H.; Yu, H.; Chen, C. Research status of laser additive manufacturing for metal: A review. J. Mater. Res. Technol. 2021, 15, 855–884. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.H.; Leary, M.; Sharabian, E.; Cordova, L.; Gibson, I.; Downing, D.; Bateman, S.; Brandt, M.; Rolfe, B. The effect of absorption ratio on meltpool features in laser-based powder bed fusion of IN718. Opt. Laser Technol. 2022, 153, 108263. [Google Scholar] [CrossRef]
- Moeinfar, K.; Khodabakhshi, F.; Kashani-bozorg, S.F.; Mohammadi, M.; Gerlich, A.P. A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys. J. Mater. Res. Technol. 2022, 16, 1029–1068. [Google Scholar] [CrossRef]
- Cunha, A.; Elie, A.-M.; Plawinski, L.; Serro, A.P.; Botelho do Rego, A.M.; Almeida, A.; Urdaci, M.C.; Durrieu, M.-C.; Vilar, R. Femtosecond laser surface texturing of titanium as a method toreduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 2016, 360, 485–493. [Google Scholar] [CrossRef]
- Dinh, T.H.; Ngo, C.V.; Chun, D.M. Controlling the Wetting Properties of Superhydrophobic Titanium Surface Fabricated by UV Nanosecond-Pulsed Laser and Heat Treatment. Nanomaterials 2018, 8, 766. [Google Scholar] [CrossRef] [Green Version]
- Kummel, D.; Hamann-Schroer, M.; Hetzner, H.; Schneider, J. Tribological behavior of nanosecond-laser surface textured Ti6Al4V. Wear 2019, 422–423, 261–268. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Zhongxu, L.; Zhanjiang, Y.; Huadong, Y. Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nanosecond laser irradiation. Opt. Laser Technol. 2020, 126, 106129. [Google Scholar] [CrossRef]
- Grabowski, A.; Florian, T.; Wieczorek, J.; Adamiak, M. Structuring of the Ti6Al4V alloy surface by pulsed laser remelting. Appl. Surf. Sci. 2021, 535, 147618. [Google Scholar] [CrossRef]
- Liu, R.; Chi, Z.; Cao, L.; Weng, Z.; Wang, L.; Li, L.; Saeed, S.; Lian, Z.; Wang, Z. Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment. Appl. Surf. Sci. 2020, 534, 147576. [Google Scholar] [CrossRef]
- Kuczynska-Zemła, D.; Kijenska-Gawronska, E.; Pisarek, M.; Borowicz, P.; Swieszkowski, W.; Garbacz, H. Effect of laser functionalization of titanium on bioactivity and biological response. Appl. Surf. Sci. 2020, 525, 146492. [Google Scholar] [CrossRef]
- Kofstand, P.; Hauffe, K.; Kjollesdal, H. Investigation on the oxidation mechanism of titanium. Acta Chem. Scand. 1958, 12, 239–266. [Google Scholar] [CrossRef]
- Ocana, M.; Garcia-Ramos, J.V.; Serna, C.J. Low-Temperature Nucleation of Rutile Observed by Raman Spectroscopy during Crystallization of TiO2. J. Am. Chem. Soc. 1992, 75, 2010–2012. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, V.V.; Scarel, G.; Aita, C.R.; Mochizuki, S. Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy. Appl. Phys. Lett. 2000, 76, 1107–1109. [Google Scholar] [CrossRef]
- Tompsett, G.A.; Bowmaker, G.A.; Cooney, R.P.; Metson, J.B.; Rodgers, K.A.; Seakins, J.M. The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 1995, 26, 57–62. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, UK, 1984; pp. 1117–1119. ISBN 978-0-08-022057-4. [Google Scholar]
Parameters | Pulse Mode (PM) | Continuous Wave (CW) |
---|---|---|
Scan speed [mm/s] | 1200–2400 | 75 |
Hatch distance [µm] | 25–100 | 25–100 |
Average power [W] | 2–20 | 8–16 |
Average Laser Power [W] | Hatch Distance [µm] | Laser Mode and Scan Speed [mm/s] | |||
---|---|---|---|---|---|
PM 2400 | PM 1800 | PM 1200 | CW 75 | ||
6 | 100 | 68.4 ± 1.3/29 | - | - | - |
8 | 25 | - | 32.5 ± 2.5/119 | 38.4 ± 2.8/35 | - |
8 | 50 | - | 49.1 ± 4.3/35 | 36.8 ± 4.5/55 | 64.3 ± 2.3/2 |
8 | 75 | - | 38.6 ± 3.8/35 | 50.6 ± 2.3/35 | - |
8 | 100 | 21.9 ± 1.6/29 | 34.3 ± 2.7/35 | 23.5 ± 1.8/35 | - |
10 | 100 | 26.7 ± 2.8/29 | - | - | - |
12 | 25 | - | 32.4 ± 1.5/55 | 17.6 ± 4.2/119 | 21.8 ± 2.3/4 |
12 | 50 | - | 48.3 ± 3.1/55 | 19.2 ± 2.5/55 | 36.4 ± 12.0/2 |
12 | 75 | - | 59.2 ± 3.6/55 | 72.9 ± 3.4/119 | 42.2 ± 5.8/2 |
12 | 100 | 22.4 ± 0.6/29 | DWD | 22.8 ± 2.3/55 | 49.5 ± 7.5/2 |
14 | 100 | 16.2 ± 1.9/29 | - | - | - |
16 | 25 | - | DWD | 23.8 ± 4.3/13 | |
16 | 50 | - | DWD | 24.9 ± 1.8/9 | |
16 | 75 | - | DWD | 17.6 ± 6.7/9 | |
16 | 100 | 13.5 ± 1.7/29 | DWD | 16.1 ± 4.7/9 | |
20 | 100 | 19.4 ± 0.5/29 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudek, M.; Wawryniuk, Z.; Nesteruk, M.; Rosowski, A.; Cichomski, M.; Kozicki, M.; Święcik, R. Changes in the Laser-Processed Ti6Al4V Titanium Alloy Surface Observed by Using Raman Spectroscopy. Materials 2022, 15, 7153. https://doi.org/10.3390/ma15207153
Dudek M, Wawryniuk Z, Nesteruk M, Rosowski A, Cichomski M, Kozicki M, Święcik R. Changes in the Laser-Processed Ti6Al4V Titanium Alloy Surface Observed by Using Raman Spectroscopy. Materials. 2022; 15(20):7153. https://doi.org/10.3390/ma15207153
Chicago/Turabian StyleDudek, Mariusz, Zuzanna Wawryniuk, Malwina Nesteruk, Adam Rosowski, Michał Cichomski, Marek Kozicki, and Robert Święcik. 2022. "Changes in the Laser-Processed Ti6Al4V Titanium Alloy Surface Observed by Using Raman Spectroscopy" Materials 15, no. 20: 7153. https://doi.org/10.3390/ma15207153
APA StyleDudek, M., Wawryniuk, Z., Nesteruk, M., Rosowski, A., Cichomski, M., Kozicki, M., & Święcik, R. (2022). Changes in the Laser-Processed Ti6Al4V Titanium Alloy Surface Observed by Using Raman Spectroscopy. Materials, 15(20), 7153. https://doi.org/10.3390/ma15207153