Optimization of the Pentachlorophenol Adsorption by Organo-Clays Based on Response Surface Methodology
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Reagents
2.2. Preparation of the Adsorbents
2.3. Preliminary adsorption test
3. Materials Characterization
3.1. Infrared Analysis
3.2. Thermogravimetric Analysis
3.3. Scanning Electron Microscopy Analysis
3.4. Point of Zero Charge (pHpzc)
3.5. Nitrogen Adsorption and Textural Analysis
3.6. XRD Analysis
3.7. Batch Adsorption Experiments
4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vendrame, L.F.O.; Zuchetto, T.; Fagan, S.B.; Zanella, I. Nanofilter Based on Functionalized Carbon Nanostructures for the Adsorption of Pentachlorophenol Molecules. Comput. Theor. Chem. 2019, 1165, 112561. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, H.; Peng, L.; Song, D.; Jiang, X.; Li, Y.; Chen, H.; Zeng, X. Pentachlorophenol Inhibits CatSper Function to Compromise Progesterone’s Action on Human Sperm. Chemosphere 2020, 259, 127493. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zha, J.; Xu, Y.; Giesy, J.P.; Wang, Z. Toxicity of Pentachlorophenol to Native Aquatic Species in the Yangtze River. Environ Sci Pollut Res. 2012, 19, 609–618. [Google Scholar] [CrossRef]
- Hedtke, S.F.; West, C.W.; Allen, K.N.; Norberg-King, T.J.; Mount, D.I. Toxicity of Pentachlorophenol to Aquatic Organisms under Naturally Varying and Controlled Environmental Conditions. Environ Toxicol Chem 1986, 5, 531–542. [Google Scholar] [CrossRef]
- Indiana Department of Environmental Management. Human Health Carcinogen Fact Sheet for Pentachlorophenol (Human Health Carcinogen-Fish Ingestion Only); EPA: Washington, DC, USA, 2000.
- Nikou, M.; Samadi-Maybodi, A.; Yasrebi, K.; Sedighi-Pashaki, E. Simultaneous Monitoring of the Adsorption Process of Two Organophosphorus Pesticides by Employing GO/ZIF-8 Composite as an Adsorbent. Environ. Technol. Innov. 2021, 23, 101590. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents Based on Montmorillonite for Contaminant Removal from Water: A Review. Appl. Clay Sci. 2016, 123, 239–258. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of Organic Pollutants by Natural and Modified Clays: A Comprehensive Review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Es-sahbany, H.; Hsissou, R.; El Hachimi, M.L.; Allaoui, M.; Nkhili, S.; Elyoubi, M.S. Investigation of the Adsorption of Heavy Metals (Cu, Co, Ni and Pb) in Treatment Synthetic Wastewater Using Natural Clay as a Potential Adsorbent (Sale-Morocco). Mater. Today: Proc. 2021, 45, 7290–7298. [Google Scholar] [CrossRef]
- Rehman, M.U.; Manan, A.; Uzair, M.; Khan, A.S.; Ullah, A.; Ahmad, A.S.; Wazir, A.H.; Qazi, I.; Khan, M.A. Physicochemical Characterization of Pakistani Clay for Adsorption of Methylene Blue: Kinetic, Isotherm and Thermodynamic Study. Mater. Chem. Phys. 2021, 269, 124722. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Adelodun, A.A. Recent Advances on the Adsorption of Herbicides and Pesticides from Polluted Waters: Performance Evaluation via Physical Attributes. J. Ind. Eng. Chem. 2021, 93, 117–137. [Google Scholar] [CrossRef]
- Padilla-Ortega, E.; Medellín-Castillo, N.; Robledo-Cabrera, A. Comparative Study of the Effect of Structural Arrangement of Clays in the Thermal Activation: Evaluation of Their Adsorption Capacity to Remove Cd(II). J. Environ. Chem. Eng. 2020, 8, 103850. [Google Scholar] [CrossRef]
- El Mouzdahir, Y.; Elmchaouri, A.; Mahboub, R.; Gil, A.; Korili, S.A. Equilibrium Modeling for the Adsorption of Methylene Blue from Aqueous Solutions on Activated Clay Minerals. Desalination 2010, 250, 335–338. [Google Scholar] [CrossRef]
- Stojšić, J.; Raos, P.; Milinović, A.; Damjanović, D. A Study of the Flexural Properties of PA12/Clay Nanocomposites. Polymers 2022, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, R.; Shahzadi, R. Mechanical Properties of Nanoclay and Nanoclay Reinforced Polymers: A Review. Polym. Compos. 2019, 40, 431–445. [Google Scholar] [CrossRef]
- Merzah, Z.F.; Fakhry, S.; Allami, T.G.; Yuhana, N.Y.; Alamiery, A. Enhancement of the Properties of Hybridizing Epoxy and Nanoclay for Mechanical, Industrial, and Biomedical Applications. Polymers 2022, 14, 526. [Google Scholar] [CrossRef]
- Elmchaouri, A.; Simonot-Grange, M.-H.; Mahboub, R. Water vapour adsorption onto Ca2+ Camp–Berteau montmorillonite and comparison with properties of Na+ sample. Thermochim. Acta 2004, 421, 193–201. [Google Scholar] [CrossRef]
- Haounati, R.; Ouachtak, H.; El Haouti, R.; Akhouairi, S.; Largo, F.; Akbal, F.; Benlhachemi, A.; Jada, A.; Addi, A.A. Elaboration and Properties of a New SDS/CTAB@Montmorillonite Organoclay Composite as a Superb Adsorbent for the Removal of Malachite Green from Aqueous Solutions. Sep. Purif. Technol. 2021, 255, 117335. [Google Scholar] [CrossRef]
- Gürses, A.; Karaca, S.; Aksakal, F.; Açikyildiz, M. Monomer and Micellar Adsorptions of CTAB onto the Clay/Water Interface. Desalination 2010, 264, 165–172. [Google Scholar] [CrossRef]
- Haloi, S.; Goswami, P.; Das, D.K. Differentiating Response of 2,7-Dichlorofluorescein Intercalated CTAB Modified Na-MMT Clay Matrix towards Dopamine and Ascorbic Acid Investigated by Electronic, Fluorescence Spectroscopy and Electrochemistry. Appl. Clay Sci. 2013, 77–78, 79–82. [Google Scholar] [CrossRef]
- Xiang, Y.; Gao, M.; Shen, T.; Cao, G.; Zhao, B.; Guo, S. Comparative Study of Three Novel Organo-Clays Modified with Imidazolium-Based Gemini Surfactant on Adsorption for Bromophenol Blue. J. Mol. Liq. 2019, 286, 110928. [Google Scholar] [CrossRef]
- Karimifard, S.; Alavi Moghaddam, M.R. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640–641, 772–797. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, M. Experimental Design and Response Surface Methodology in Energy Applications: A Tutorial Review. Energy Convers. Manag. 2017, 151, 630–640. [Google Scholar] [CrossRef]
- Manmai, N.; Unpaprom, Y.; Ramaraj, R. Bioethanol Production from Sunflower Stalk: Application of Chemical and Biological Pretreatments by Response Surface Methodology (RSM). Biomass Conv. Bioref. 2021, 11, 1759–1773. [Google Scholar] [CrossRef]
- Bhattacharya, S. Central Composite Design for Response Surface Methodology and Its Application in Pharmacy. In Response Surface Methodology in Engineering Science; Kayaroganam, P., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Breig, S.J.M.; Luti, K.J.K. Response Surface Methodology: A Review on Its Applications and Challenges in Microbial Cultures. Mater. Today: Proc. 2021, 42, 2277–2284. [Google Scholar] [CrossRef]
- Boubakri, A.; Hafiane, A.; Bouguecha, S.A.T. Application of Response Surface Methodology for Modeling and Optimization of Membrane Distillation Desalination Process. J. Ind. Eng. Chem. 2014, 20, 3163–3169. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Tsiouras, A.; Mourtzinos, I. Extraction of Lycopene from Tomato Using Hydrophobic Natural Deep Eutectic Solvents Based on Terpenes and Fatty Acids. Foods 2022, 11, 2645. [Google Scholar] [CrossRef]
- Valdés, A.; Garrigós, M.C.; Jiménez, A. Extraction and Characterization of Antioxidant Compounds in Almond (Prunus Amygdalus) Shell Residues for Food Packaging Applications. Membranes 2022, 12, 806. [Google Scholar] [CrossRef]
- Ejimofor, M.I.; Ezemagu, I.G.; Menkiti, M.C. RSM and ANN-GA Modeling of Colloidal Particles Removal from Paint Wastewater via Coagulation Method Using Modified Aguleri Montmorillonite Clay. Curr. Res. Green Sustain. Chem. 2021, 4, 100164. [Google Scholar] [CrossRef]
- Onu, C.E.; Nwabanne, J.T.; Ohale, P.E.; Asadu, C.O. Comparative Analysis of RSM, ANN and ANFIS and the Mechanistic Modeling in Eriochrome Black-T Dye Adsorption Using Modified Clay. South Afr. J. Chem. Eng. 2021, 36, 24–42. [Google Scholar] [CrossRef]
- Taoufik, N.; Elmchaouri, A.; El Mahmoudi, S.; Korili, S.A.; Gil, A. Comparative Analysis Study by Response Surface Methodology and Artificial Neural Network on Salicylic Acid Adsorption Optimization Using Activated Carbon. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100448. [Google Scholar] [CrossRef]
- Jha, A.; Garade, A.C.; Shirai, M.; Rode, C.V. Metal Cation-Exchanged Montmorillonite Clay as Catalysts for Hydroxyalkylation Reaction. Appl. Clay Sci. 2013, 74, 141–146. [Google Scholar] [CrossRef]
- Kavitha, D. Equilibrium, Kinetics, Thermodynamics and Desorption Studies of Pentachlorophenol onto Agricultural Waste Activated Carbon. Mater. Today: Proc. 2020, 33, 4746–4750. [Google Scholar] [CrossRef]
- Marouf, R.; Khelifa, N.; Marouf-Khelifa, K.; Schott, J.; Khelifa, A. Removal of Pentachlorophenol from Aqueous Solutions by Dolomitic Sorbents. J. Colloid Interface Sci. 2006, 297, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Slaný, M.; Jankovič, Ľ.; Madejová, J. Structural Characterization of Organo-Montmorillonites Prepared from a Series of Primary Alkylamines Salts: Mid-IR and near-IR Study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- Anouar, F.; Elmchaouri, A.; Taoufik, N.; Rakhila, Y. Investigation of the Ion Exchange Effect on Surface Properties and Porous Structure of Clay: Application of Ascorbic Acid Adsorption. J. Environ. Chem. Eng. 2019, 7, 103404. [Google Scholar] [CrossRef]
- Benhouria, A.; Islam, M.A.; Zaghouane-Boudiaf, H.; Boutahala, M.; Hameed, B.H. Calcium Alginate–Bentonite–Activated Carbon Composite Beads as Highly Effective Adsorbent for Methylene Blue. Chem. Eng. J. 2015, 270, 621–630. [Google Scholar] [CrossRef]
- ALOthman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Tabrizi, S.H.; Tanhaei, B.; Ayati, A.; Ranjbari, S. Substantial Improvement in the Adsorption Behavior of Montmorillonite toward Tartrazine through Hexadecylamine Impregnation. Environ. Res. 2022, 204, 111965. [Google Scholar] [CrossRef]
- Shah, K.J.; Pan, S.-Y.; Shukla, A.D.; Shah, D.O.; Chiang, P.-C. Mechanism of Organic Pollutants Sorption from Aqueous Solution by Cationic Tunable Organoclays. J. Colloid Interface Sci. 2018, 529, 90–99. [Google Scholar] [CrossRef]
- Leite, S.T.; do Nascimento, F.H.; Masini, J.C. Fe(III)-Polyhydroxy Cations Supported onto K10 Montmorillonite for Removal of Phosphate from Waters. Heliyon 2020, 6, e03868. [Google Scholar] [CrossRef] [PubMed]
- Almasri, D.A.; Rhadfi, T.; Atieh, M.A.; McKay, G.; Ahzi, S. High Performance Hydroxyiron Modified Montmorillonite Nanoclay Adsorbent for Arsenite Removal. Chem. Eng. J. 2018, 335, 1–12. [Google Scholar] [CrossRef]
- Nong, Y.; Sun, J.; Fu, M.; Chen, H.; Zhang, Z. Effects of Cationic Modifier Type on the Structure and Morphology of Organo-Montmorillonite and Its Application Properties in a High-Temperature White Oil System. Appl. Clay Sci. 2021, 203, 105995. [Google Scholar] [CrossRef]
- Pereira, L.M.S.; Milan, T.M.; Tapia-Blácido, D.R. Using Response Surface Methodology (RSM) to Optimize 2G Bioethanol Production: A Review. Biomass Bioenergy 2021, 151, 106166. [Google Scholar] [CrossRef]
- Arcand, Y.; Hawari, J.; Guiot, S.R. Solubility of Pentachlorophenol in Aqueous Solutions: The PH Effect. Water Res. 1995, 29, 131–136. [Google Scholar] [CrossRef]
- Kaur, M.; Kumari, S.; Sharma, P. Response Surface Methodology Adhering Central Composite Design for the Optimization of Zn (II) Adsorption Using Rice Husk Nanoadsorbent. Chem. Phys. Lett. 2022, 801, 139684. [Google Scholar] [CrossRef]
- Omorogie, M.O.; Naidoo, E.B.; Ofomaja, A.E. Response Surface Methodology, Central Composite Design, Process Methodology and Characterization of Pyrolyzed KOH Pretreated Environmental Biomass: Mathematical Modelling and Optimization Approach. Model. Earth Syst. Environ. 2017, 3, 1171–1186. [Google Scholar] [CrossRef]
- Khoshkroodi, S.R.G.; Lalinia, M.; Moosavian, M.A.; Sillanpää, M. Erbium Adsorption from Aqueous Solutions Using RSM-Based Optimization of the Phosphate Functional Group in Modified Nano Titania. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128537. [Google Scholar] [CrossRef]
- Azizi, A.; Dargahi, A.; Almasi, A. Biological Removal of Diazinon in a Moving Bed Biofilm Reactor – Process Optimization with Central Composite Design. Toxin Rev. 2021, 40, 1242–1252. [Google Scholar] [CrossRef]
- Shankar, A.; Kongot, M.; Saini, V.K.; Kumar, A. Removal of Pentachlorophenol Pesticide from Aqueous Solutions Using Modified Chitosan. Arab. J. Chem. 2020, 13, 1821–1830. [Google Scholar] [CrossRef]
Adsorbent | PCP, Amount Adsorbed (mg/g) | SBET (m2/g) | Sext (m2/g) | dp (nm) | Vp (cm3/g) |
---|---|---|---|---|---|
Mt | 13.50 | 241 | 130 | 6.22 | 0.375 |
Mt-CTA | 21.28 | 173 | 123 | 7.35 | 0.319 |
Mt-Fe-CTA | 34.57 | 96 | 94 | 8.86 | 0.213 |
Mt-Al-CTA | 26.15 | 105 | 84 | 8.06 | 0.213 |
Mt-Zn-CTA | 28.52 | 98 | 86 | 8.25 | 0.203 |
Mt-Mg-CTA | 24.59 | 92 | 82 | 8.61 | 0.197 |
Mt-Na-CTA | 26.82 | 100 | 84 | 8.28 | 0.208 |
Variables (Xi) | −2 | −1 | 0 | +1 | +2 | |
---|---|---|---|---|---|---|
X1 = pH | 5 | 6 | 7 | 8 | 9 | 1 |
X2 = tc (h) | 1 | 4 | 7 | 10 | 13 | 3 |
X3 = m (mg) | 10 | 20 | 30 | 40 | 50 | 10 |
X4 = Cint (mg/L) | 2 | 4 | 6 | 8 | 10 | 2 |
Order | pH | tc | m | Cint | pH | tc | m | Cint | Qe |
---|---|---|---|---|---|---|---|---|---|
1 | −1 | 1 | −1 | 1 | (6) | (10) | (20) | (8) | 35.0000 |
2 | 1 | −1 | −1 | −1 | (8) | (4) | (20) | (4) | 18.0000 |
3 | 0 | 0 | 0 | 0 | (7) | (7) | (30) | (6) | 19.0850 |
4 | −1 | −1 | −1 | −1 | (6) | (4) | (20) | (4) | 18.3660 |
5 | 1 | 1 | 1 | −1 | (8) | (10) | (40) | (4) | 1.9935 |
6 | 0 | 0 | 0 | 2 | (7) | (7) | (30) | (10) | 19.2810 |
7 | 0 | −2 | 0 | 0 | (7) | (1) | (30) | (6) | 15.2723 |
8 | −1 | −1 | 1 | 1 | (6) | (4) | (40) | (8) | 15.5229 |
9 | 0 | 0 | 0 | 0 | (7) | (7) | (30) | (6) | 18.9107 |
10 | 0 | 0 | 0 | −2 | (7 | (7) | (30) | (2) | 6.1002 |
11 | 0 | 0 | 0 | 0 | (7) | (7) | (30) | (6) | 19.0414 |
12 | −1 | −1 | −1 | 1 | (6) | (4) | (20) | (8) | 38.0392 |
13 | 0 | 0 | −2 | 0 | (7) | (7) | (10) | (6) | 37.8431 |
14 | 0 | 2 | 0 | 0 | (7) | (13) | (30) | (6) | 19.0414 |
15 | −1 | 1 | 1 | 1 | (6) | (10) | (40) | (8) | 18.4314 |
16 | 1 | −1 | −1 | 1 | (8) | (4) | (20) | (8) | 21.9281 |
17 | 1 | 1 | 1 | 1 | (8) | (10) | (40) | (8) | 18.1209 |
18 | 2 | 0 | 0 | 0 | (9) | (7) | (30) | (6) | 17.9303 |
19 | 0 | 0 | 0 | 0 | (7) | (7) | (30) | (6) | 19.1939 |
20 | 0 | 0 | 2 | 0 | (7) | (7) | (50) | (6) | 11.5817 |
21 | −1 | 1 | 1 | −1 | (6) | (10) | (40) | (4) | 8.7255 |
22 | 0 | 0 | 0 | 0 | (7) | (7) | (30) | (6) | 19.2157 |
23 | −2 | 0 | 0 | 0 | (5) | (7) | (30) | (6) | 19.4336 |
24 | 1 | −1 | 1 | −1 | (8) | (4) | (40) | (4) | 2.9248 |
25 | 0 | 0 | 0 | 0 | (7) | (7) | (30) | (6) | 19.0632 |
26 | 1 | 1 | −1 | −1 | (8) | (10) | (20) | (4) | 13.9869 |
27 | −1 | 1 | −1 | −1 | (6) | (10) | (20) | (4) | 18.9869 |
28 | 1 | 1 | −1 | 1 | (8) | (10) | (20) | (8) | 25.4248 |
29 | 1 | −1 | 1 | 1 | (8) | (4) | (40) | (8) | 18.1209 |
30 | −1 | −1 | 1 | −1 | (6) | (4) | (40) | (4) | 9.3954 |
31 | 0 | 0 | 0 | 0 | (7) | (7) | (30) | (6) | 19.2375 |
Term | Coefficient | Estimation | Standard Error | t Ratio | prob. > |t| |
---|---|---|---|---|---|
Constant | β0 | 19.106754 | 1.279135 | 14.94 | <0.0001* |
pH | β1 | −1.812364 | 0.690812 | −2.62 | 0.0184 * |
T | β2 | 0.1847313 | 0.690812 | 0.27 | 0.7926 |
m | β3 | −6.270697 | 0.690812 | −9.08 | <0.0001 * |
Cinit | β4 | 5.1289034 | 0.690812 | 7.42 | <0.0001 * |
pH × tc | β12 | −0.171569 | 0.846068 | −0.2 | 0.8419 |
pH × m | β13 | 1.1662582 | 0.846068 | 1.38 | 0.187 |
t × m | β23 | 0.3574346 | 0.846068 | 0.42 | 0.6783 |
pH × Cinit | β14 | −0.394199 | 0.846068 | −0.47 | 0.6476 |
t × Cinit | β24 | 0.6147876 | 0.846068 | 0.73 | 0.4779 |
m × Cinit | β34 | −0.151144 | 0.846068 | −0.18 | 0.8605 |
pH × pH | β11 | −0.194989 | 0.63287 | −0.31 | 0.762 |
tc × tc | β22 | −0.576253 | 0.63287 | −0.91 | 0.3761 |
m × m | β33 | 1.3126362 | 0.63287 | 2.07 | 0.0546 |
Cinit × Cinit | β44 | −1.69281 | 0.63287 | −2.67 | 0.0166 * |
Source | Degree of Freedom | Sum of Squares | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 14 | 1843.1399 | 131.6530 | 11.4947 | <0.0001 |
Residual | 16 | 183.2532 | 11.4530 | ||
Total | 30 | 2026.3931 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mahmoudi, S.; Elmchaouri, A.; El kaimech, A.; Gil, A. Optimization of the Pentachlorophenol Adsorption by Organo-Clays Based on Response Surface Methodology. Materials 2022, 15, 7169. https://doi.org/10.3390/ma15207169
El Mahmoudi S, Elmchaouri A, El kaimech A, Gil A. Optimization of the Pentachlorophenol Adsorption by Organo-Clays Based on Response Surface Methodology. Materials. 2022; 15(20):7169. https://doi.org/10.3390/ma15207169
Chicago/Turabian StyleEl Mahmoudi, Soufiane, Abdellah Elmchaouri, Assya El kaimech, and Antonio Gil. 2022. "Optimization of the Pentachlorophenol Adsorption by Organo-Clays Based on Response Surface Methodology" Materials 15, no. 20: 7169. https://doi.org/10.3390/ma15207169
APA StyleEl Mahmoudi, S., Elmchaouri, A., El kaimech, A., & Gil, A. (2022). Optimization of the Pentachlorophenol Adsorption by Organo-Clays Based on Response Surface Methodology. Materials, 15(20), 7169. https://doi.org/10.3390/ma15207169