Tribological Properties of Laser Cladded Alloys for Repair of Rail Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and the Laser Cladding Process
2.2. Roller-on-Disc Experiment and Analysis
2.2.1. Sample Preparation
2.2.2. Wear Test Apparatus
2.2.3. Evaluation of Hardness
2.2.4. Microstructural Analysis
2.2.5. Wear Measurements and Worn Surface Characterization
3. Results and Discussion
3.1. Microstructure of the Non-Clad and Cladded Rails
3.2. Wear Performance of Non-Clad and Cladded Rails
3.3. Worn Surface Characterization of the Non-Clad and Cladded Rails
3.3.1. Optical Micrographs of the Non-Clad and Cladded Rails
3.3.2. SEM Images of the Non-Clad and Cladded Rails
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beretta, S.; Braghin, F.; Bucca, G.; Desimone, H. Structural integrity analysis of a tram-way: Load spectra and material damage. Wear 2005, 258, 1255–1264. [Google Scholar] [CrossRef]
- Mortazavian, E.; Wang, Z.; Teng, H. Repair of light rail track through restoration of the worn part of the railhead using submerged arc welding process. Int. J. Adv. Manuf. Technol. 2020, 107, 3315–3332. [Google Scholar] [CrossRef]
- Clare, A.; Oyelola, O.; Folkes, J.; Farayibi, P. Laser cladding for railway repair and preventative maintenance. J. Laser Appl. 2012, 24, 032004. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, N.; Zhou, C.; Wang, G.; Feng, J. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment. J. Mater. Process. Technol. 2021, 289, 116949. [Google Scholar] [CrossRef]
- Lewis, S.R.; Fretwell-Smith, S.; Goodwin, P.S.; Smith, L.; Lewis, R.; Aslam, M.; Fletcher, D.I.; Murray, K.; Lambert, R. Improving rail wear and RCF performance using laser cladding. Wear 2016, 366–367, 268–278. [Google Scholar] [CrossRef]
- Wang, W.J.; Hu, J.; Guo, J.; Liu, Q.Y.; Zhu, M.H. Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials. Wear 2014, 311, 130–136. [Google Scholar] [CrossRef]
- Seo, J.-W.; Kim, J.C.; Kwon, S.-J.; Jun, H.-K. Effects of laser cladding for repairing and improving wear of rails. Int. J. Precis. Eng. Manuf. 2019, 20, 1207–1217. [Google Scholar] [CrossRef]
- Guo, H.-M.; Wang, Q.; Wang, W.-J.; Guo, J.; Liu, Q.-Y.; Zhu, M.-H. Investigation on wear and damage performance of laser cladding Co-based alloy on single wheel or rail material. Wear 2015, 328–329, 329–337. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Y.; Mu, X.; Wang, W.; Yao, Z.; Yang, H. Study on wear and RCF performance of repaired damage railway wheels: Assessing laser cladding to repair local defects on wheels. Wear 2019, 430–431, 126–136. [Google Scholar] [CrossRef]
- Roy, T.; Lai, Q.; Abrahams, R.; Mutton, P.; Paradowska, A.; Soodi, M.; Yan, W. Effect of deposition material and heat treatment on wear and rolling contact fatigue of laser cladded rails. Wear 2018, 412, 69–81. [Google Scholar] [CrossRef]
- Lu, P.; Lewis, S.R.; Fretwell-Smith, S.; Engelberg, D.L.; Fletcher, D.I.; Lewis, R. Laser cladding of rail; the effects of depositing material on lower rail grades. Wear 2019, 438–439, 203045. [Google Scholar] [CrossRef]
- Fasihi, P.; Abrahams, R.; Mutton, P.; Yan, W. Tribological properties of a new alloy laser cladded on hypereutectoid rails. J. Tribol. 2021, 143, 051110. [Google Scholar] [CrossRef]
- Kendall, O.; Fasihi, P.; Abrahams, R.; Paradowska, A.; Reid, M.; Lai, Q.; Qiu, C.; Mutton, P.; Soodi, M.; Yan, W. Application of a new alloy and post processing procedures for laser cladding repairs on hypereutectoid rail components. Materials 2022, 15, 5447. [Google Scholar] [CrossRef] [PubMed]
- Clare, A.T.; Oyelola, O.; Abioye, T.E.; Farayibi, P.K. Laser cladding of rail steel with Co-Cr. Surf. Eng. 2013, 29, 731–736. [Google Scholar] [CrossRef]
- Sun, S.; Durandet, Y.; Brandt, M. Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel. Surf. Coat. Technol. 2005, 194, 225–231. [Google Scholar] [CrossRef]
- Lai, Q.; Abrahams, R.; Yan, W.; Qiu, C.; Mutton, P.; Paradowska, A.; Soodi, M.; Wu, X. Influences of depositing materials, processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails. J. Mater. Process. Technol. 2019, 263, 1–20. [Google Scholar] [CrossRef]
- Kapoor, A.; Fletcher, D.; Franklin, F.J. The role of wear in enhancing rail life. Tribol. Ser. 2003, 41, 331–340. [Google Scholar]
- Magel, E.; Mutton, P.; Ekberg, A.; Kapoor, A. Rolling contact fatigue, wear and broken rail derailments. Wear 2016, 366, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, D.; Kapoor, A. Rapid method of stress intensity factor calculation for semi-elliptical surface breaking cracks under three-dimensional contact loading. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2006, 220, 219–234. [Google Scholar] [CrossRef]
- Ball, A. On the importance of work hardening in the design of wear-resistant materials. Wear 1983, 91, 201–207. [Google Scholar] [CrossRef]
- De Gee, A. Comments on “Resistance of pure metals to low stress abrasive wear”. Wear 1982, 81, 373–374. [Google Scholar] [CrossRef]
- Narayanan, A.; Mostafavi, M.; Pirling, T.; Kabra, S.; Lewis, R.; Pavier, M.J.; Peel, M.J. Residual stress in laser cladded rail. Tribol. Int. 2019, 140, 105844. [Google Scholar] [CrossRef]
Fe | Co | Cr | C | Mn | Si | Ni | Cu | Mo | V | Nb | Al | S | P | Ti | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HE400 Rail | Bal | - | 0.20 | 0.93 | 0.95 | 0.28 | <0.01 | - | <0.01 | <0.01 | <0.01 | <0.01 | 0.014 | - | - |
Light Rail | Bal | - | 0.46 | 0.17 | 1.20 | 0.24 | 1.01 | 0.10 | 0.48 | 0.03 | 0.02 | 0.06 | <0.01 | 0.01 | <0.01 |
SS415 | Bal | - | 12.4 | 0.13 | 0.85 | 0.48 | 0.21 | 0.04 | 0.03 | 0.01 | <0.01 | <0.01 | 0.01 | 0.02 | <0.01 |
SS412 | Bal | - | 12.3 | 0.06 | 0.67 | 0.52 | 0.14 | 0.04 | 0.03 | 0.01 | <0.01 | <0.01 | 0.01 | 0.02 | <0.01 |
Stellite 6 | 0.09 | Bal | 28.3 | 0.99 | 0.02 | 1.58 | 0.72 | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.03 | 0.01 |
Load (N) | Rotational Disc Speed (RPM) | Wear Track Radius (mm) | Contact Conditions |
---|---|---|---|
50 | 28 | 5.45 | Dry |
Specimen | Light Rail (Substrate) | Hypereutectoid Rail (Substrate) |
---|---|---|
Non-Clad | 360 | 400 |
Martensitic Stainless Steel | 430 | 530 |
Stellite 6 | 450 | 441 |
Specimen | Total Wear Volume Loss (mm3) | % Difference with Substrate |
---|---|---|
Non-Clad | 0.2127 ± 0.007 | N/A |
SS412 | 0.1104 ± 0.016 | −48.1 |
Stellite 6 | 0.0217 ± 0.006 | −89.8 |
Specimen | Average Hardness before Testing (HV5) | Average Hardness after Testing (HV5) | Increase in Hardness (%) |
---|---|---|---|
Non-Clad | 360.0 ± 16.8 | 419.1 ± 55.6 | 14.11 |
SS412 | 387.3 ± 57.7 | 516.7 ± 49.5 | 25.04 |
Stellite 6 | 416.9 ± 62.8 | 565.1 ± 63.9 | 26.22 |
Specimen | Average Hardness Before Testing (HV5) | Average Hardness after Testing (HV5) | Increase in Hardness (%) |
---|---|---|---|
Non-Clad * | 388.4 ± 16.7 | 432.3 ± 16.7 | 10.15 |
SS415 ** | 520.2 ± 7.3 | 654.6 ± 15.4 | 20.56 |
Stellite 6 * | 450.2 ± 16.7 | 683.3 ± 16.7 | 34.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasihi, P.; Kendall, O.; Abrahams, R.; Mutton, P.; Qiu, C.; Schläfer, T.; Yan, W. Tribological Properties of Laser Cladded Alloys for Repair of Rail Components. Materials 2022, 15, 7466. https://doi.org/10.3390/ma15217466
Fasihi P, Kendall O, Abrahams R, Mutton P, Qiu C, Schläfer T, Yan W. Tribological Properties of Laser Cladded Alloys for Repair of Rail Components. Materials. 2022; 15(21):7466. https://doi.org/10.3390/ma15217466
Chicago/Turabian StyleFasihi, Panahsadat, Olivia Kendall, Ralph Abrahams, Peter Mutton, Cong Qiu, Thomas Schläfer, and Wenyi Yan. 2022. "Tribological Properties of Laser Cladded Alloys for Repair of Rail Components" Materials 15, no. 21: 7466. https://doi.org/10.3390/ma15217466
APA StyleFasihi, P., Kendall, O., Abrahams, R., Mutton, P., Qiu, C., Schläfer, T., & Yan, W. (2022). Tribological Properties of Laser Cladded Alloys for Repair of Rail Components. Materials, 15(21), 7466. https://doi.org/10.3390/ma15217466