Fabrication and Characterization of Au-Decorated MCM-41 Mesoporous Spheres Using Laser-Ablation Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Methods
Au Factualization of MCM-41 Mesoporous Nanoparticles via PLAL Technique
3. Results and Discussion
3.1. TGA Analysis
3.2. TEM Analyses
3.3. UV-Vis and FTIR Spectroscopy Analysis
3.4. Raman Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vallet-Regi, M.; Ramilla, A.; del Real, R.P.; Pariente, P.J. A New Property of MCM-41: Drug Delivery System. Chem. Mater. 2001, 13, 308. [Google Scholar] [CrossRef]
- Munoz, B.; Ramilla, A.; Perez-Pariente, J.; Diaz, I.; Regi, M.V. MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chem. Mater. 2003, 15, 500. [Google Scholar]
- De Freitas, F.; Keils, D.; Lachter, E.; Maia, C.; da Silva, M.P.; Nascimento, R.V. Synthesis and evaluation of the potential of nonionic surfactants/mesoporous silica systems as nanocarriers for surfactant controlled release in enhanced oil recovery. Fuel 2019, 241, 1184–1194. [Google Scholar] [CrossRef]
- Diaz, J.F.; Balkus, K.J., Jr. Enzyme immobilization in MCM-41 molecular sieve. J. Mol. Catal. B Enzym. 1996, 2, 115. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Trewyn, B.G.; Jeftinijs, D.M.; Xu, K.J.S.; Jeftinija, S.; Lin, S.-Y. A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. J. Am. Chem. Soc. 2003, 125, 4451. [Google Scholar] [CrossRef] [PubMed]
- Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J.M. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 1995, 378, 159. [Google Scholar] [CrossRef]
- Alsmaeil, A.W.; Hammami, M.A.; Enotiadis, A.; Kanj, M.Y.; Giannelis, E.P. Encapsulation of an anionic surfactant into hollow spherical nanosized capsules: Size control, slow release, and potential use for enhanced oil recovery applications and environmental remediation. ACS Omega 2021, 6, 5689–5697. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal template. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Lee, G.; Choi, E.; Yang, S.; Cho, E.-B. Tailoring Pore Size, Structure, and Morphology of Hierarchical Mesoporous Silica Using Diblock and Pentablock Copolymer Templates. J. Phys. Chem. 2018, 122, 4507. [Google Scholar] [CrossRef]
- Niederer, J.P.M.; Arnold, A.B.J.; Hölderich, W.F.; Spliethof, B.; Tesche, B.; Reetz, M.; Bönnemann, H. Noble Metal Nanoparticles Incorporated in Mesoporous Hosts. Top. Catal. 2002, 18, 265–269. [Google Scholar] [CrossRef]
- Yan, H.; Yao, S.; Yin, B.; Liang, W.; Jin, X.; Feng, X.; Liu, Y.; Chen, X.; Yang, C. Synergistic effects of bimetallic PtRu/MCM-41 nanocatalysts for glycerol oxidation in base-free medium: Structure and electronic coupling dependent activity. Appl. Catal. B Environ. 2019, 259, 118070. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Zheng, Y.; Ma, M.; Chen, Y.; Zhang, K.; Zeng, D.; Shi, J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 2013, 34, 2057–2068. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shao, D.; Chang, Z.; Lu, M.; Wang, Y.; Yue, J.; Yang, D.; Li, M.; Xu, Q.; Dong, W.-F. Janus Gold Nanoplatform for Synergetic Chemoradiotherapy and Computed Tomography Imaging of Hepatocellular Carcinoma. ACS Nano 2017, 11, 12732–12741. [Google Scholar] [CrossRef]
- Muniz-Miranda, M.; Gellini, C.; Giorgetti, E. Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C 2011, 115, 5021–5027. [Google Scholar] [CrossRef]
- Chen, L.; Sun, H.; Zhao, Y.; Zhang, Y.; Wang, Y.; Liu, Y.; Zhang, X.; Jiang, Y.; Hua, Z.; Yang, J. Plasmonic-induced SERS enhancement of shell-dependent Ag–Cu2O core–shell nanoparticles. RSC Adv. 2017, 7, 16553–16560. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.B.; Vu, T.K.T.; Nguyen, Q.D.; Nguyen, T.D.; Nguyen, T.A.; Trinh, T.H. Preparation of metal nanoparticles for surface enhanced Raman scattering by laser ablation method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 025016. [Google Scholar] [CrossRef]
- Cueto, M.; Piedrahita, M.; Caro, C.; Martínez-Haya, B.; Sanz, M.; Oujja, M.; Castillejo, M. Platinum nanoparticles as photoactive substrates for mass spectrometry and spectroscopy sensors. J. Phys. Chem. C 2014, 118, 11432–11439. [Google Scholar] [CrossRef]
- Caro, C.; Sayagues, M.J.; Franco, V.; Conde, A.; Zaderenko, P.; Gámez, F. A hybrid silver-magnetite detector based on surface enhanced Raman scattering for differentiating organic compounds. Sens. Actuators B Chem. 2016, 228, 124–133. [Google Scholar] [CrossRef]
- Yang, L.; Lv, J.; Sui, Y.; Fu, W.; Zhou, X.; Ma, J.; Su, S.; Zhang, W.; Lv, P.; Wu, D.; et al. Fabrication of Cu2O/Ag composite nanoframes as surface-enhanced Raman scattering substrates in a successive one-pot procedure. CrystEngComm 2014, 16, 2298–2304. [Google Scholar] [CrossRef]
- Wang, R.-C.; Li, C.-H. Cu, Cu–Cu2O core–shell, and hollow Cu2O nanodendrites: Structural evolution and reverse surface-enhanced Raman scattering. Acta Mater. 2011, 59, 822–829. [Google Scholar] [CrossRef]
- Ji, R.; Sun, W. One-step hydrothermal synthesis of Ag/Cu2O heterogeneous nanostructures over Cu foil and their SERS applications. RSC Adv. 2014, 4, 6055–6059. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.K.; Bright, J.; Meng, F.; Senty, T.R.; Zheng, P.; Bristow, A.D.; Wu, N. Ag–Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 2013, 3, 47–51. [Google Scholar] [CrossRef]
- Ahmed, S.; Ramli, A. Effect of surfactant concentration on the physico-chemical characteristics of mesoporous molecular sieve. J. Appl. Sci. 2011, 11, 1178–1184. [Google Scholar] [CrossRef] [Green Version]
- Lang, N.; Tuel, A.A. Fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials. Chem. Mater. 2004, 16, 1961–1966. [Google Scholar] [CrossRef]
- Alheshibri, M.; Akhtar, S.; al Baroot, A.; Elsayed, K.A.; al Qahtani, H.S.; Drmosh, Q.A. Template-free single-step preparation of hollow CoO nanospheres using pulsed laser ablation in liquid enviroment. Arab. J. Chem. 2021, 14, 103317. [Google Scholar] [CrossRef]
- Goworek, J.; Kierys, A.; Gac, W.; Borówka, A.; Kusak, R. Thermal degradation of CTAB in as-synthesized MCM-41. J. Therm. Anal. Calorim. 2009, 96, 375–382. [Google Scholar] [CrossRef]
- Ndeh, N.T.; Maensiri, S.; Maensiri, D. The effect of green synthesized gold nanoparticles on rice germination and roots. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 035008. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.; Asiri, S.M.; Khan, F.A.; Gunday, S.T.; Iqbal, A.; Alrushaid, N.; Labib, O.A.; Deen, G.R.; Henari, F.Z. Formulation of gold nanoparticles with hibiscus and curcumin extracts induced anti-cancer activity. Arab. J. Chem. 2022, 15, 103594. [Google Scholar] [CrossRef]
- Balakrishnan, V.; Wab, H.A.A.; Razak, K.A.; Shamsuddin, S. In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J. Nanomater. 2013, 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Nithiyanantham, U.; Ede, S.R.; Ozaydin, M.F.; Liang, H.; Rathishkumar, A.; Kundu, S. Low temperature, shape-selective formation of Sb2Te3 nanomaterials and their thermoelectric applications. RSC Adv. 2015, 5, 89621–89634. [Google Scholar] [CrossRef]
- Siddiqui, S.; Siddiqui, Z.N. Strontium doped MCM-41: A highly efficient, recyclable and heterogeneous catalyst for the synthesis of phenoxy pyrazolyl pyrazolines. Catal. Lett. 2018, 148, 3628–3645. [Google Scholar] [CrossRef]
- Mahmoudi, F.; Mahmoudi, F.; Gollo, K.H.; Amini, M.M. Novel gold Nanoparticles: Green synthesis with eryngium thyrsoideum Boiss extract, characterization, and in vivo investigations on inflammatory gene expression and biochemical parameters in Type 2 diabetic rats. Biol. Trace Elem. Res. 2022, 200, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Dendramis, A.L.; Schwinn, E.W.; Sperline, R.P. A surface-enhanced Raman scattering study of CTAB adsorption on copper. Surf. Sci. 1983, 134, 675–688. [Google Scholar] [CrossRef]
- Mai, F.-D.; Chung-Chin, Y.; Yu-Chuan, L.; Chun-Chao, C.; Kuang-Hsuan, Y. Highly effective surface-enhanced Raman scattering-active gold substrates prepared by using electrochemical methods in the presence of hexadecyltrimethylammonium bromide. J. Electroanal. Chem. 2014, 712, 96–102. [Google Scholar] [CrossRef]
- Yu, C.; Varghese, L.; Irudayaraj, J. Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. Langmuir 2007, 23, 9114–9119. [Google Scholar] [CrossRef]
Raman Band of CTAB (cm−1) | Tentative Band Assignments |
---|---|
1555 | CH3 deformation |
1496 | CH2 scissors |
1338 | CH2 wag |
1286 | CH2 twist |
1176 | C-C deformation |
891 | CH3 deformation |
753 | CN+ stretch |
294 | C4N+ deformation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Qahtani, H.S.; Akhtar, S.; Alam, M.W.; Hossain, M.K.; Al Baroot, A.; Alheshibri, M. Fabrication and Characterization of Au-Decorated MCM-41 Mesoporous Spheres Using Laser-Ablation Technique. Materials 2022, 15, 7470. https://doi.org/10.3390/ma15217470
Al Qahtani HS, Akhtar S, Alam MW, Hossain MK, Al Baroot A, Alheshibri M. Fabrication and Characterization of Au-Decorated MCM-41 Mesoporous Spheres Using Laser-Ablation Technique. Materials. 2022; 15(21):7470. https://doi.org/10.3390/ma15217470
Chicago/Turabian StyleAl Qahtani, Hassan S., Sultan Akhtar, Mir Waqas Alam, Mohammad Kamal Hossain, Abbad Al Baroot, and Muidh Alheshibri. 2022. "Fabrication and Characterization of Au-Decorated MCM-41 Mesoporous Spheres Using Laser-Ablation Technique" Materials 15, no. 21: 7470. https://doi.org/10.3390/ma15217470
APA StyleAl Qahtani, H. S., Akhtar, S., Alam, M. W., Hossain, M. K., Al Baroot, A., & Alheshibri, M. (2022). Fabrication and Characterization of Au-Decorated MCM-41 Mesoporous Spheres Using Laser-Ablation Technique. Materials, 15(21), 7470. https://doi.org/10.3390/ma15217470